
Mon. Not. R. Astron. Soc. 000, 1–18 (2016) Printed 20 October 2017 (MN LaTEX style file v2.2)

Wavelet-Bayesian inference of cosmic strings embedded in the
cosmic microwave background

J. D. McEwen1?, S. M. Feeney2,3, H. V. Peiris4,5, Y. Wiaux6, C. Ringeval7

and F. R. Bouchet8
1Mullard Space Science Laboratory (MSSL), University College London, Surrey RH5 6NT, U.K.
2Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, U.K.
3Center for Computational Astrophysics, 160 5th Avenue, New York, NY 10010, USA
4Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K.
5The Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, Stockholm, Sweden
6Institute of Sensors, Signals, and Systems, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
7Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
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ABSTRACT
Cosmic strings are a well-motivated extension to the standard cosmological model and could
induce a subdominant component in the anisotropies of the cosmic microwave background
(CMB), in addition to the standard inflationary component. The detection of strings, while ob-
servationally challenging, would provide a direct probe of physics at very high energy scales.
We develop a framework for cosmic string inference from observations of the CMB made over
the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced
CMB component has distinct statistical properties to the standard inflationary component. Our
wavelet-Bayesian framework provides a principled approach to compute the posterior distri-
bution of the string tension Gµ and the Bayesian evidence ratio comparing the string model to
the standard inflationary model. Furthermore, we present a technique to recover an estimate
of any string-induced CMB map embedded in observational data. Using Planck-like simu-
lations we demonstrate the application of our framework and evaluate its performance. The
method is sensitive to Gµ ∼ 5 × 10−7 for Nambu-Goto string simulations that include an in-
tegrated Sachs-Wolfe (ISW) contribution only and do not include any recombination effects,
before any parameters of the analysis are optimised. The sensitivity of the method compares
favourably with other techniques applied to the same simulations.

Key words: cosmology: cosmic background radiation – cosmology: observations – methods:
data analysis – methods: statistical.

1 INTRODUCTION

High-precision measurements of the anisotropies of the cosmic mi-
crowave background (CMB) strongly favour a standard cosmo-
logical model in which the large-scale structure of the Universe
is seeded by nearly scale-invariant Gaussian density perturbations
created during a phase of inflation (Hinshaw et al. 2013; Planck
Collaboration XIII 2016). These measurements do, however, leave
room for additional subdominant contributions to the CMB gener-
ated by processes beyond the standard inflationary paradigm. Cos-
mic strings represent a particularly well motivated extension to the
standard model (for reviews see Brandenberger 1994; Vilenkin &
Shellard 1994; Hindmarsh & Kibble 1995; Copeland & Kibble
2009). Arising in a range of attempts at Grand Unification, cos-
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mic strings are linear topological defects produced when the Uni-
verse undergoes certain symmetry-breaking phase transitions. In an
expanding Universe, the existence of causally separate regions pre-
vents the symmetry from being broken in the same way throughout
space, with a network of cosmic strings inevitably forming as a
result (Kibble 1976). Such a string network cannot be solely re-
sponsible for producing the anisotropies of the CMB — cosmic
strings cannot explain the acoustic peaks of the CMB power spec-
trum (Pen et al. 1997). However, cosmic strings could induce a
subdominant contribution to the CMB through the Kaiser-Stebbins
effect (Kaiser & Stebbins 1984), which induces a step-like (i.e.,
highly non-Gaussian) temperature change between photons passing
either side of a moving string. The magnitude of the contribution to
the relative CMB temperature anisotropies from a single, straight
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string is given by

∆T
T0

= 8πGµvγs, (1)

where v is the transverse string velocity, γs is the corresponding
relativistic gamma factor, G is the gravitational constant and µ is
the string tension (throughout we use natural units c = 1). More
generally, the situation is complicated by the existence of an evolv-
ing network of wiggly strings in an expanding universe. Calculat-
ing accurate observable effects of a network of cosmic strings is
a rich and computationally demanding area of research (Albrecht
& Turok 1989; Bennett & Bouchet 1989, 1990; Allen & Shellard
1990; Hindmarsh 1994; Bouchet et al. 1988; Vincent et al. 1998;
Moore et al. 2002; Landriau & Shellard 2003; Ringeval et al. 2007;
Fraisse et al. 2008; Landriau & Shellard 2011; Blanco-Pillado et al.
2011; Ringeval & Bouchet 2012), requiring the numerical evolu-
tion of the network in the presence of photons, matter and dark
energy. Tools to simulate full-sky, high-resolution maps of string-
induced CMB anisotropies incorporating all physical effects are not
yet available. The current state-of-the-art methods produce matter-
free simulations, which faithfully represent the small-scale struc-
ture imparted by the string network via the integrated Sachs-Wolfe
(ISW) effect (Ringeval & Bouchet 2012) but do not include recom-
bination effects. These simulations nevertheless remain computa-
tionally intensive, requiring hundreds of thousands of CPU hours
to simulate a single full-sky map at Planck resolution.

The energy scale of the string-inducing phase transition η is
directly related to the string tension µ by µ ∼ η2. Detecting the sig-
natures of cosmic strings would therefore provide a direct probe of
physics at extremely high energy scales. However, since any string
signature must be subdominant, detecting strings is a significant
observational challenge. The magnitude of the task is demonstrated
in Fig. 1, in which we compare the power spectrum of a simulated
string-induced CMB contribution (Ringeval & Bouchet 2012) (with
amplitude close to current observational limits) and a standard in-
flationary component, as would be observed by Planck. Hereafter,
we refer to string-induced CMB anisotropy maps with the short-
hand “string maps”.

Various methods have been developed to search for string-
induced contributions to the CMB, from power-spectrum con-
straints (Lizarraga et al. 2014a,b, 2016; Charnock et al. 2016), to
higher-order statistics such as the bispectrum (Planck Collabora-
tion XXV 2014; Regan & Hindmarsh 2015) and trispectrum (Fer-
gusson et al. 2010), and tools such as edge detection (Lo & Wright
2005; Amsel et al. 2008; Stewart & Brandenberger 2009; Danos
& Brandenberger 2010), Minkowski functionals (Gott et al. 1990;
Ducout et al. 2013; Planck Collaboration XXV 2014), wavelets
and curvelets (Starck et al. 2004; Hammond et al. 2009; Wiaux
et al. 2010; Planck Collaboration XXV 2014; Hergt et al. 2016),
level crossings (Sadegh Movahed & Khosravi 2011), and peak-
peak correlations (Movahed et al. 2013). Current constraints on
the string tension depend on the string model and simulation tech-
nique adopted. For Nambu-Goto strings, power spectrum analy-
ses based on simulations computed by the unconnected segment
model (USM; Albrecht et al. 1997, 1999; Pogosian & Vachaspati
1999) constrain the string tension to Gµ < 1.3 × 10−7 (Planck
Collaboration XXV 2014) using Planck temperature data and to
Gµ < 1.1 × 10−7 (Charnock et al. 2016) when Planck polarisation
data are also included. Recombination effects have been consid-
ered by Regan & Hindmarsh (2015) but were found not to have a
significant effect on the bispectrum. Beyond spectra, non-Gaussian
analyses for Nambu-Goto strings—based on high-resolution sim-
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Figure 1. Power spectra of the fiducial CMB, smoothed by the Planck beam
and the healpix pixel window function corresponding to Nside = 2048 (grey,
long dash), Planck instrumental noise (grey, short dash) and their sum (blue,
solid). For comparison, a power spectrum estimated from a simulated full-
sky cosmic string-induced CMB component (Ringeval & Bouchet 2012) is
plotted, corresponding to Gµ = 5×10−7 (orange, dot-dash). The string con-
tribution is clearly subdominant, highlighting the challenge in constraining
cosmic string models.

ulations of stringy CMB maps including only the ISW (integrated
Sachs-Wolfe) contribution and no recombination effects (Ringeval
& Bouchet 2012)—constrain the string tension to Gµ < 7.8 × 10−7

(Planck Collaboration XXV 2014) using Planck temperature data.
Considering only the ISW effect enables the production of high-
resolution full-sky string maps, but these maps are necessarily con-
servative, and the resulting constraints are hence weaker. Further-
more, effects of recombination physics would increase the string
anisotropy signal considerably (Planck Collaboration XXV 2014).
While power spectrum statistics are inherently lossy, map-based
analyses have the potential to better discriminate cosmic strings
from other potential subdominant CMB signals.

As constraints on the amplitude of any string-induced com-
ponent tighten, analysis techniques must become more sensitive
to improve on the status quo. Wavelets are a particularly power-
ful tool for searching for cosmic strings due to their ability to si-
multaneously characterise signal structure in both scale and posi-
tion. Furthermore, wavelets that are well-matched to the expected
structure of string maps can be adopted, facilitating extraction of
the string signal from the CMB and instrumental noise. Although
string-induced CMB anisotropies are non-Gaussian, the statistical
distribution of the pixels of a cosmic string map nevertheless re-
mains close to Gaussian. In Fig. 2 histograms of simulated infla-
tionary and cosmic string components are plotted, in both pixel
(Fig. 2(a)) and wavelet (Fig. 2(b)) space. The shape of the distri-
butions is reasonably similar in pixel space, whereas in wavelet
space the distributions are markedly different. The distribution of
the string component in wavelet space is highly peaked (i.e. lep-
tokurtic) due to the sparse representation of the string component
in wavelet space (i.e. due to the property that many of the wavelet
coefficients of the string component are near zero). The inflation-
ary CMB component, however, remains Gaussian distributed in
wavelet space, since the wavelet transform is linear. The difference
in the statistical properties of the string and inflationary CMB com-
ponents in wavelet space can be exploited to isolate and estimate
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Figure 2. Distributions of map m ∈ {c, s}, comprising either a CMB sim-
ulated inflationary component c (blue, dashed) or string component s (red,
solid) CMB components, in both pixel space and scale-discretised wavelet
space (for Gµ = 2 × 10−6). The string-induced component is simulated by
the method of Ringeval & Bouchet (2012). The shape of the distributions is
reasonably similar in pixel space, whereas in wavelet space the distributions
are markedly different.

the parameters of any string component. This is the approach taken
in the current work.1

In this article we develop a hybrid wavelet-Bayesian approach
to infer the presence and parameters of any cosmic string compo-
nent in the CMB. We do not consider (insufficient) summary statis-
tics like many alternative methods (e.g. the kurtosis), for which the
origin of any non-Gaussian component cannot be rigorously de-
termined. Instead, we learn and exploit the complex non-Gaussian
structure of string-induced CMB contributions. We follow the ap-
proach of Hammond et al. (2009), generalising from the planar set-
ting to the celestial sphere. In Hammond et al. (2009), techniques
using planar wavelets are presented to learn the statistical struc-
ture of string-induced CMB contributions and to exploit this struc-
ture to recover an estimate of a planar map of the string compo-
nent. We generalise these techniques to the full-sky setting using
scale-discretised wavelets defined on the sphere (McEwen et al.
2015b; Leistedt et al. 2013; Wiaux et al. 2008), adopting direc-

1 For very small scales, the underlying string distribution in pixel space be-
comes increasingly different to a Gaussian distribution in its tails, however
these features can be washed out observationally by instrumental beams.
In any case, for small instrumental beams that preserve these features the
wavelet approach presented in the current work would characterise such
structure, improving the sensitivity of the analysis.

tional wavelets with parameters selected to match the characteris-
tic step-like temperature changes induced by strings in the CMB
(Kaiser & Stebbins 1984). While Hammond et al. (2009) adopt
a power spectrum approach to estimate the string tension, we re-
cover the posterior distribution of the string tension in our wavelet
formalism. Moreover, we also compute the Bayesian evidence to
distinguish between the cosmic string model and the standard in-
flationary model. In summary, we present a principled and robust
statistical framework based on Bayesian inference for parameter
estimation and model selection, performing a Bayesian analysis in
wavelet space where the inflationary and string induced CMB com-
ponents have very different statistical properties. An overview of
the string model and the recovery of any string-induced component
is illustrated in Fig. 3, while an example of the scale-discretised
wavelets considered is shown in Fig. 4.

We restrict our attention here to simulated observations mod-
elling idealised Planck observations. An optimisation of the pa-
rameters of the method and the application to Planck data will be
presented in a subsequent study. We employ the matter-free sim-
ulations of Ringeval & Bouchet (2012), which faithfully represent
the small-scale string anisotropies produced by the ISW effect. As
previously stated, these simulations come at a cost of hundreds of
thousands of CPU hours per full-sky Planck-resolution map. Fortu-
nately, our approach requires only two realisations of string maps:
one to train our method and one to test it (see Fig. 6).

The outline of the paper is as follows. In Sec. 2, we review
the wavelets used in this analysis. In Sec. 3 we describe in detail
our hybrid wavelet-Bayesian framework for inferring the string ten-
sion and determining the Bayesian evidence for the string model
relative to the standard inflationary model. We present in Sec. 4
the approach to recovering an estimate of the string-induced CMB
component at the map level in the full-sky setting, which can be
viewed as a Bayesian thresholding approach to denoising the ob-
served CMB signal. In Sec. 5 we apply our framework to simulated
observations and discuss the results. Concluding remarks are made
in Sec. 6.

2 SCALE-DISCRETISED WAVELETS ON THE SPHERE

Wavelets on the sphere have found widespread use in analy-
ses of the CMB (e.g. Vielva et al. 2004; McEwen et al. 2005,
2006b, 2008b; Vielva et al. 2006; McEwen et al. 2007b, 2008c;
Feeney et al. 2011a,b; Feeney et al. 2012; Planck Collaboration
XII 2014; Planck Collaboration XXIII 2014; Planck Collaboration
XXV 2014) due to their ability to localise signal content in scale
and space simultaneously (for a review see McEwen et al. 2007c).

Initial stable wavelet constructions on the sphere were
based largely on continuous methodologies (e.g. Antoine & Van-
dergheynst 1998, 1999; Wiaux et al. 2005; Sanz et al. 2006;
McEwen et al. 2006a), which do not support the exact synthesis of
a sampled signal from its wavelet coefficients in practice. Conse-
quently, cosmological analyses based on these constructions were
limited to the analyses of wavelet coefficients; sampled signals
on the sphere could not be accurately recovered from processed
wavelet coefficients. Alternative discrete constructions based on
the lifting scheme (Sweldens 1997) were developed (Schröder &
Sweldens 1995; Barreiro et al. 2000; McEwen & Scaife 2008;
McEwen et al. 2011), however these do not necessarily lead to a
stable basis (Sweldens 1997).

More recently, a number of exact discrete wavelet frame-
works on the sphere have been developed, with underlying contin-
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Figure 3. Illustration of string map recovery. Under the string model, the CMB is comprised of a string-induced component (top left quadrant) and a Gaussian
inflationary background component (top right quadrant), yielding the observed CMB map (bottom right quadrant). For visualisation purposes, in this simulation
the string component is generated for a relatively large value of the string tension (Gµ = 2 × 10−6), which controls the amplitude of the string map. We invert
this process to recover an estimate of the input string component (bottom left quadrant). This is achieved by our hybrid wavelet-Bayesian analysis pipeline,
which estimates the posterior distribution of the string tension, the Bayesian evidence for strings, and the mean-posterior string map. The same quadrant of
each map is displayed in each panel, rotated and reflected as required.

uous representations and fast implementations that have been made
available publicly, including needlets (Narcowich et al. 2006; Baldi
et al. 2009; Marinucci et al. 2008), directional scale-discretised
wavelets (Wiaux et al. 2008; Leistedt et al. 2013; McEwen et al.
2013), and the isotropic undecimated and pyramidal wavelet trans-
forms (Starck et al. 2006). Each approach has also been extended to
analyse spin functions on the sphere (Geller et al. 2008; Geller &
Marinucci 2010, 2011; Geller et al. 2009; McEwen et al. 2015b,
2014; Starck et al. 2009) and functions defined on the three-
dimensional ball formed by augmenting the sphere with the radial
line (Durastanti et al. 2014; Leistedt & McEwen 2012; McEwen &
Leistedt 2013; Leistedt et al. 2015; Lanusse et al. 2012). Ridgelet
and curvelet wavelets on the sphere have also been constructed
(Starck et al. 2006; McEwen 2017; Chan et al. 2016).

In this work we adopt directional scale-discretised wavelets
(Wiaux et al. 2008; Leistedt et al. 2013; McEwen et al. 2013,
2015b, 2016), which are essentially the generalisation of needlets
(Narcowich et al. 2006; Baldi et al. 2009; Marinucci et al. 2008)
to directional wavelets (McEwen et al. 2016). Directional scale-
discretised wavelets have recently been shown to satisfy quasi-
exponential localisation and asymptotic uncorrelation properties
similar to needlets (McEwen et al. 2016) and consequently have
excellent spatial localisation properties.

In the remainder of this section we review directional scale-
discretised wavelets concisely; for further details please see the re-
lated literature (Wiaux et al. 2008; Leistedt et al. 2013; McEwen
et al. 2013, 2015b, 2016). The reader not interested in the details
may safely skip the following subsections and simply note the no-
tation used to denote wavelet coefficients specified in Eq. (3).

2.1 Wavelet transform and inversion

The scale-discretised wavelet transform of a function f ∈ L2(S2)
on the sphere S2 is defined by the directional convolution of f with
the wavelet Ψ( j) ∈ L2(S2). In order to perform directional, spherical
convolutions it is necessary to rotate functions on the sphere. The
rotation operator Rρ is defined by

Ψ jρ(ω) ≡ (RρΨ j)(ω) ≡ Ψ j(R−1
ρ ω̂) , (2)

where Rρ is the three-dimensional rotation matrix corresponding
to Rρ. Spherical coordinates are denoted ω = (θ, ϕ) ∈ S2 with co-
latitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π), where ω̂ denotes
the Cartesian vector corresponding to ω. Rotations are specified
by elements of the rotation group SO(3), parameterised by the Eu-
ler angles ρ = (α, β, γ) ∈ SO(3), with α ∈ [0, 2π), β ∈ [0, π] and
γ ∈ [0, 2π). The scale-discretised wavelet transform on the sphere
then reads

W f
jρ ≡ W f

j (ρ) ≡ ( f ~ Ψ j)(ρ) ≡ 〈 f , Ψ jρ〉

=

∫
S2

dΩ(ω) f (ω)Ψ∗jρ(ω) , (3)

where j denotes the wavelet scale, which encodes the angular lo-
calisation of the wavelet, dΩ(ω) = sin θ dθ dϕ is the usual rotation-
invariant measure on the sphere, and ·∗ denotes complex conjuga-
tion. The inner product of functions on the sphere is denoted 〈·, ·〉,
while the operator ~ denotes directional convolution on the sphere.

The wavelet transform of Eq. (3) thus probes directional struc-
ture in the signal of interest f , where γ can be viewed as the ori-
entation about each point on the sphere (θ, ϕ) = (β, α). Wavelet
coefficient at scale j therefore live on the rotation group, i.e.
W f

j ∈ L2(SO(3)). We adopt the shorthand notation W f
jρ to denote

the wavelet coefficients of the signal f at scale j and position and
orientation ρ, in order to simplify subsequent statistical calcula-
tions.

c© 2016 RAS, MNRAS 000, 1–18
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The wavelet coefficients do not encode the low-frequency con-
tent of the signal f ; a scaling function is introduced for this purpose.
The scaling coefficients S f ∈ L2(S2) are given by the convolution
of f with the axisymmetric scaling function Φ ∈ L2(S2) and read

S f
ω ≡ S f (ω) ≡ ( f � Φ)(ω) ≡ 〈 f , Φω〉

=

∫
S2

dΩ(ω′) f (ω′)Φ∗ω(ω′) , (4)

where the rotated scaling function is defined by

Φω(ω′) ≡ (RωΦ)(ω′) ≡ Φ(R−1
ω ω̂

′) , (5)

with Rω = R(ϕ,θ,0). The operator � denotes axisymmetric convo-
lution on the sphere. Note that the scaling coefficients live on the
sphere, and not the rotation group SO(3), since directional struc-
ture of the low-frequency content of f is not typically of interest.
We adopt the shorthand notation S f

ω to denote the scaling coeffi-
cients of the signal f at position ω. In addition, we introduce the
shorthand notation W f = W( f ) to represent the overall wavelet
analysis of f , i.e. including both wavelet and scaling coefficients.

Provided the wavelets and scaling function satisfy an admissi-
bility condition (see Sec. 2.2), the original signal f can be synthe-
sised exactly from its wavelet and scaling coefficients by

f (ω) =

∫
S2

dΩ(ω′)S f
ω′

Φω′ (ω) +

J∑
j=0

∫
SO(3)

d%(ρ)W f
jρΨ jρ(ω) , (6)

where d%(ρ) = sin β dα dβ dγ is the usual invariant measure on
SO(3). We introduce the shorthand notation f =W−1(W f ) to rep-
resent the synthesis of a signal from its wavelet and scaling coeffi-
cients.

We adopt the same convention as Wiaux et al. (2008) and
McEwen et al. (2016) for the wavelet scales j, with increasing j
corresponding to larger angular scales, i.e. lower frequency con-
tent.2 The maximum possible wavelet scale j is denoted by Jmax and
is set to ensure the wavelets probe the entire scale (frequency) range
(except zero) of the signal of interest, yielding Jmax = dlogλ(`max)e,
where λ is a dilation parameter (see Wiaux et al. 2008; Leistedt
et al. 2013; McEwen et al. 2015b, 2016). The maximum wavelet
scale considered in a given analysis J may be freely chosen, pro-
vided 0 6 J < Jmax. For J = Jmax, the wavelets probe the entire
frequency content of the signal of interest except its mean, which
is incorporated in the scaling coefficients.

2.2 Wavelet construction

For the original signal to be synthesised perfectly from its wavelet
and scaling coefficients through Eq. (6) the wavelets and scaling
function must satisfy the following admissibility property:

4π
2` + 1

|Φ`0|
2 +

8π2

2` + 1

J∑
j=J0

∑̀
m=−`

|(Ψ j)`m|
2 = 1 , ∀` , (7)

where Φ`0δm0 = 〈Φ, Y`m〉 and (Ψ j)`m = 〈Ψ j, Y`m〉 are the spherical
harmonic coefficients of Φ and Ψ j, respectively, where δi j for i, j ∈
Z denotes the Kronecker delta. The spherical harmonic functions
are denoted by Y`m ∈ L2(S2), with ` ∈ N and m ∈ Z, |m| 6 `.

2 Note that this differs to the convention adopted in Leistedt et al. (2013)
and McEwen et al. (2015b) where increasing j corresponds to smaller an-
gular scales and higher frequency content.

-15 15

Figure 4. Directional scale-discretised wavelet with odd azimuthal symme-
try for N = 4, j = 7, `max = 2048, and λ = 2. The wavelet is rotated from
the North pole to the equator for visualisation purposes. The same wavelet
parameters are assumed when analysing cosmic string maps, although lower
j (i.e. smaller scales) are also considered. The wavelet is selected to match
the step-like structure of contributions to the CMB due to cosmic strings,
in order to yield a sparse representation of the string component in wavelet
space.

Wavelets are defined in harmonic space in the separable form

(Ψ j)`m ≡

√
2` + 1

8π2 κ j(`) ζ`m , (8)

in order to control their angular and directional localisation sep-
arately, respectively through the kernel κ j ∈ L2(R+) and direc-
tionality component ζ ∈ L2(S2), with harmonic coefficients ζ`m =

〈ζ, Y`m〉. Without loss of generality, the directionality component is
normalised to impose ∑̀

m=−`

|ζ`m|
2 = 1, ∀` . (9)

An azimuthal band-limit N is imposed on the directionality com-
ponent such that ζ`m = 0, ∀`,m with |m| > N, which controls the
directional selectivity of the wavelet. Moreover, the wavelets are
constructed to exhibit odd (even) azimuthal symmetry for N − 1
odd (even). For further detail regarding the explicit construction of
the wavelet kernel and directionality component see, e.g., McEwen
et al. (2016). An example of a scale-discretised wavelet on the
sphere is plotted in Fig. 4

2.3 Computation

By appealing to sampling theorems on the sphere (e.g. McEwen &
Wiaux 2011) and rotation group (e.g. McEwen et al. 2015a), the
forward and inverse wavelet transforms of sampled signals can be
computed exactly in theory for band-limited signals on the sphere,
i.e. signals with spherical harmonic coefficients f`m = 0, ∀` > `max,
where f`m = 〈 f , Y`m〉. The only error arising in numerical com-
putations is that due to the finite representation of floating point
numbers (indeed, numerical errors are found to be on the order
of machine precision; see e.g. McEwen et al. 2015b). In practice,
many real-world signals can be approximated accurately by band-
limited signals. Furthermore, fast algorithms to compute the har-
monic transforms associated with sampling theorems on the sphere
and rotation group (e.g. McEwen & Wiaux 2011; McEwen et al.
2015a, respectively) can be exploited to render forward and inverse
scale-discretised wavelet transforms computationally feasible for
large cosmological data-sets (e.g. Planck maps).

c© 2016 RAS, MNRAS 000, 1–18
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The scale-discretised wavelet transform on the sphere is im-
plemented in the s2let code (Leistedt et al. 2013; McEwen et al.
2015b). The core algorithms of s2let are implemented in C, while
Matlab, Python and IDL interfaces are also provided. Conse-
quently, s2let is able to handle very large harmonic band-limits,
corresponding to data-sets containing tens of millions of pixels.
s2let3 is publicly available, and relies on the ssht4 code (McEwen
& Wiaux 2011) to compute spherical harmonic transforms, the
so35 code (McEwen et al. 2015a) to compute Wigner transforms
and the fftw6 code to compute Fourier transforms. Note that it
also supports the analysis of data on the sphere defined in the
common healpix7 (Górski et al. 2005) format. s2let provides the
most recent and feature-rich implementation of scale-discretised
wavelets, however, development on this project and s2let was con-
current, and here we therefore use the previous s2dw8 code (Wiaux
et al. 2008) (which is functionally identical for the setting consid-
ered). s2dw is implemented in Fortran, and relies on the s29 code
(McEwen et al. 2007a, 2008a) to handle data defined on the sphere
and fftw to perform Fourier transforms.

3 INFERENCE OF COSMIC STRING MODEL

While a cosmic string-induced component embedded in the CMB
will not be Gaussian, the statistical distribution of the pixels of a
cosmic string map nevertheless remains close to Gaussian. In Fig. 2
histograms of simulated inflationary and string-induced CMB com-
ponents are plotted, in both pixel (Fig. 2(a)) and wavelet (Fig. 2(b))
space. In pixel space the distributions are similar. In wavelet space,
however, while the distribution of the inflationary CMB component
remains Gaussian (since the wavelet transform is linear), the dis-
tribution of the string-induced component is highly non-Gaussian.
The latter distribution is peaked sharply about zero, illustrating the
sparsifying nature of the wavelet transform for strings: the wavelet
coefficients of the string-induced CMB component are sparsely dis-
tributed in wavelet space, while the coefficients of the inflationary
CMB component are not.

We construct a hybrid wavelet-Bayesian framework to infer
the presence of cosmic strings from CMB temperature observa-
tions. By constructing the statistical framework in wavelet space,
where the inflationary and string-induced components have quite
different statistical properties, we exploit the sparseness of the
wavelet representation of the string signal to effectively determine
the presence and parameters of any such component.

In this section we first describe the various models consid-
ered. We then define the statistical distributions of the inflationary
and string-induced CMB components and noise, before presenting
the framework for estimating the posterior distribution of the string
tension Gµ and for estimating the Bayesian evidence in order to
perform model selection.

3 http://www.s2let.org
4 http://www.spinsht.org
5 http://www.sothree.org
6 http://www.fftw.org
7 http://healpix.jpl.nasa.gov
8 http://www.s2dw.org
9 http://www.jasonmcewen.org/codes.html

Wd

W ss
W−1

Wg g
W

C` N`

G Gaussian

ζ j ξ jGµ

G Generalised Gaussian

j ∈ {0, ..., J}

Figure 5. Graphical Bayesian model Ms of the observed inflationary (Gaus-
sian) and string induced (non-Gaussian) CMB components, represented in
both wavelet and pixel spaces. Solid lines represent stochastic dependen-
cies, while dashed lines represent deterministic dependencies. The string
component is modelled by a generalised Gaussian distribution (GGD) in
wavelet space, while the inflationary and noise components are modelled
by Gaussian distributions in pixel space. The string component, Gaussian
component and observed data are denoted by s, g, and d, respectively, while
wavelet coefficients are denoted by W with superscript representing the rel-
evant signal. The forward and inverse wavelet transforms are represented
by the shorthand notationW andW−1, respectively. The GGDs modelling
the wavelet coefficients of the string component are defined by the string
tension Gµ and the scale and shape parameters ζ j and ξ j, respectively. The
Gaussian component is defined by the inflationary CMB and noise power
spectra, C` and N`, respectively.

3.1 Models

In the presence of a subdominant contribution due to cosmic
strings, we model full-sky observational CMB data d as the sum of
a string component s, an inflationary Gaussian component c, and
noise n:

Ms : d = s + c + n . (10)

All signals are assumed to be zero-mean since we study the pertur-
bations of cosmological signals about their mean. We denote this
string model by Ms. The alternative (standard) model is denoted by
Mc and consists of an inflationary CMB component and noise only,
absent of any string component:

Mc : d = c + n , (11)

We work predominantly in wavelet space, where the inflation-
ary and string-induced CMB components exhibit very different sta-
tistical distributions. Since the wavelet transform is linear, the mod-
els considered can be recast in wavelet space by, respectively,

Ms : Wd
jρ = W s

jρ + Wc
jρ + Wn

jρ (12)

and

Mc : Wd
jρ = Wc

jρ + Wn
jρ , (13)

where Wd = W(d), W s = W(s), Wc = W(c) and Wn = W(n)
are the wavelet coefficients of the observed CMB data, string com-
ponent, inflationary component and noise, respectively. Here we
denote the wavelet coefficients for each scale j and rotation ρ sepa-
rately (hence the subscripts). Similar expressions hold for the scal-
ing coefficients.

A graphical representation of the string model Ms in both
wavelet and pixel space is shown in Fig. 5. The distributions mod-
elling the string component, inflationary component and noise are

c© 2016 RAS, MNRAS 000, 1–18
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defined subsequently. While some of the variables used in the
model shown in Fig. 5 have yet to be defined, it is nevertheless use-
ful to present the general model now, which can then be used as a
reference as the details of the model and distributions are specified
in the subsequent subsections.

3.2 Statistical distributions

We determine the statistical distributions of the inflationary, noise
and string-induced CMB components in wavelet space. The first
two can be calculated analytically from an assumed power spec-
trum (since they are Gaussian), whereas the latter must be learnt
from a string training simulation.

Since we determine these distributions in wavelet space, it is
necessary in the following derivations to relate the wavelet coef-
ficients of a signal to its spherical harmonic representation (e.g.
McEwen et al. 2007a):

Wd
jρ =

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

d`m (Ψ j)∗`n D`
mn(ρ) , (14)

where d`m = 〈d, Y`m〉 and D`
mn ∈ L2(SO(3)) are the Wigner D-

functions. We adopt the shorthand notation
∑∞
`=0

∑`
m=−`

∑`
n=−` =∑

`mn henceforth and, assuming signals band-limited at `max, trun-
cate sums over ` to `max.

3.2.1 CMB

The inflationary CMB component is assumed to be a homogeneous
and isotropic Gaussian random field on the sphere defined by its
power spectrum C`:

E
[
c`mc∗`′m′

]
= C` δ``′ δmm′ , (15)

where E
[
·
]

denotes expectation. The cosmological parameters
defining the power spectrum C` are assumed fixed at concordance
values (Planck Collaboration XIII 2016) since the string contri-
bution is subdominant. Since the wavelet transform is linear, the
wavelet coefficients of the inflationary CMB component are also
Gaussian. Their variance for scale j is

(σc
j)

2 = E
[
Wc

jρ Wc
jρ
∗]

= E
[∑
`mn

D`
mn(ρ) c`m (Ψ∗j)`n

∑
`′m′n′

D`′∗
m′n′ (ρ) c∗`′m′ (Ψ j)`′n′

]
=

∑
`m

C` |(Ψ j)`m|
2 , (16)

where we have used Eq. (14) and the Wigner property (Var-
shalovich et al. 1989)∑

m

D`
mn(ρ)D`∗

mn′ (ρ) = δnn′ (17)

(for an alternative proof of Eq. (16) see McEwen et al. 2007b). Con-
sequently, the probability distribution of the wavelet coefficients of
the inflationary CMB component on scale j read:

Pc
j(W

c
jρ) =

1√
2π(σc

j)2
exp

[
−

1
2

(Wc
jρ

σc
j

)2]
. (18)

We use P(·) to denote generic probability distributions; however,
when referring to a particular distribution we add appropriate su-
perscripts and subscripts. Although this notation is not strictly nec-
essary it improves the readability of the Bayesian analysis that fol-
lows. As typically considered in statistical wavelet analyses we as-
sume wavelet coefficients are independent and do not include their

full covariance structure. We revisit the assumption of indepen-
dence later and introduce measures to account for this approxima-
tion.

3.2.2 Noise

Assuming Gaussian noise, we can include noise by simply modify-
ing the Gaussian inflationary component to include the inflationary
signal c and noise n:

g = c + n . (19)

The resulting term g is Gaussian distributed since both c and n are
Gaussian distributed. For modelling simplicity, we assume homo-
geneous and isotropic noise defined by power spectrum N` such
that

E
[
g`mg∗`′m′

]
= (C` + N`) δ``′ δmm′ . (20)

In practice a beam b` and pixel window function p` may also be
incorporated, yielding

E
[
g`mg∗`′m′

]
= (b2

` p2
`C` + N`) δ``′ δmm′ . (21)

3.2.3 Cosmic strings

Since the cosmic string-induced CMB component is not Gaussian
and its map space distribution is not known a priori, it is not pos-
sible to analytically determine its distribution in wavelet space.
Hence, we learn its distribution from a training simulated string
map and test the distribution on a separate testing simulated string
map.

String maps simulated by the method of Ringeval & Bouchet
(2012) are shown in Fig. 6. As previously stated, simulating these
full-sky string maps at high resolution is extremely computationally
demanding, requiring hundreds of thousands of CPU hours. Thank-
fully, we require only two simulated string maps: one for training,
i.e. learning the statistical properties of string-induced CMB com-
ponents; and one for testing our framework.

We adopt a generalised Gaussian distribution (GGD) to model
the string-induced component in wavelet space and fit its parame-
ters from the training simulation. The GGD of wavelet coefficients
given a string tension Gµ is defined by

Ps
j(W

s
jρ |Gµ) =

ξ j

2Gµζ jΓ(ξ j
−1)

exp
(
−

∣∣∣∣∣ W s
jρ

Gµζ j

∣∣∣∣∣ξ j
)
, (22)

where ζ j and ξ j are scale and shape parameters respectively (note
that the overall scale of the distribution is dependent on the string
tension and is given by Gµζ j at each scale) and Γ(·) denotes the
Gamma function. The GGD reduces to many common distributions
for various shape parameters ξ. Gaussian and Laplacian distribu-
tions are recovered for ξ = 2 and ξ = 1 respectively, and in the
limit ξ → ∞ the uniform distribution is recovered. The shape pa-
rameter can thus be considered as a measure of sparsity of the un-
derlying signal. Note that GGDs have been used to model wavelet
coefficients previously (e.g. Simoncelli & Adelson 1996). Due to
statistical isotropy, the parameters of the GGD modelling the string
contribution depend on wavelet scale j only and not the position or
orientation of wavelet coefficients ρ. For small scales we expect the
distribution of wavelet coefficients of the string map to be sparse in
wavelet space, which we check by testing whether the shape of the
distribution is leptokurtic, i.e. if ξ j < 2.

We learn the shape and scale parameters of the GGD for the
wavelet coefficients of a string-induced CMB component by the

c© 2016 RAS, MNRAS 000, 1–18
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-80 80∆T/(T0Gµ)

(a) Training

-80 80∆T/(T0Gµ)

(b) Testing

Figure 6. Cosmic string-induced CMB anisotropies simulated by the
method of Ringeval & Bouchet (2012).

method of moments approach outlined in Hammond et al. (2009).
The variance and kurtosis of the GGD distributed wavelet coeffi-
cients of the string signal are given by, respectively,

(σs
j)

2 =
(Gµ)2ζ j

2Γ(3ξ j
−1)

Γ(ξ j
−1)

(23)

and

κs
j =

Γ(5ξ j
−1)Γ(ξ j

−1)(
Γ(3ξ j

−1)
)2 . (24)

We compute the variance and kurtosis of the string training map
and then solve these equations numerically to recover the scale and
shape parameters of the GGD describing the wavelet coefficients of
the string signal at each scale j. In practice, we train on the training
string map with a beam and pixel windowed function applied.

The distributions of the cosmic string maps are shown in Fig. 7
and Fig. 8, while the estimated GGD shape parameters are listed in
Table 1. The fitted GGD distribution of the training map matches
the histogram of the testing map well for small scales (low j), indi-
cating that the learnt GGD accurately models the general statistical
properties of cosmic string included CMB maps. As the scale be-
comes larger (higher j) the match becomes less accurate due to
cosmic variance. The distributions are also highly leptokurtic for
small scales (low j), i.e. ξ j < 2, as apparent from the plots of the
distributions (Fig. 7 and Fig. 8) and the fitted GGD shape param-
eters listed in Table 1: the string map is indeed sparse in wavelet
space, as expected. As the scale increases the distribution becomes
less leptokurtic, also as expected. We therefore consider wavelet

Table 1. GGD shape parameter ξ j fitted to the testing string map. As ex-
pected the fitted GGD distributions are highly leptokurtic for small scales
(low j), with GGD shape parameter ξ j < 2, due to the sparse representation
of the string-induced CMB component in wavelet space.

Wavelet scale j GGD shape ξ j

0 0.94
1 1.08
2 1.40
3 1.69
4 1.68
5 1.79
6 1.91
7 1.76
8 1.84
9 1.80
10 2.57

coefficients up to and including scale j = 7 only in the subsequent
analysis, i.e. we set J = 7.

While we focus on inference in the current article, as an aside
we note that once we have learnt the statistical properties of string
maps, we can use the learnt distribution to simulate realisations
of string maps for very low computational cost. However, in the
current approach to training we do not learn the full covariance
properties of the string components in wavelet space. We leave the
development of a computationally efficient approach to simulating
high-resolution, full-sky cosmic string-induced CMB maps to fu-
ture work.

3.3 String tension estimation

In this section, we derive the posterior distribution for the string
tension Gµ under the string model Ms. By Bayes theorem the string
tension posterior P(Gµ |Wd) is related to the likelihood P(Wd |Gµ)
by

P(Gµ |Wd) =
P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) , (25)

where P(Gµ) is the prior distribution for the string tension. For now
we ignore the normalising denominator P(Wd) (the Bayesian evi-
dence), which we return to in the following section. Recall that Wd

are the wavelet coefficients of the observed CMB data.
For each wavelet coefficient Wd

jρ at scale j and position and
orientation ρ the likelihood can be calculated by

P(Wd
jρ |Gµ) = P(W s

jρ + Wg
jρ |Gµ) (26)

=

∫
R

dW s
jρ Pg

j (W
d
jρ −W s

jρ) Ps
j(W

s
jρ |Gµ) , (27)

where Wg
jρ are the wavelet coefficients of the Gaussian compo-

nent g, which includes the inflationary CMB component and noise.
The distributions comprising the integrand of Eq. (27) are pre-
cisely those described in Sec. 3.2, which we determine analyti-
cally or learn from a simulated string map. To compute the over-
all likelihood of the data, for speed of processing we assume each
wavelet coefficient is independent, in which case the overall likeli-
hood reads:

P(Wd |Gµ) =
∏

j,ρ

P(Wd
jρ |Gµ) . (28)
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Wavelet-Bayesian inference of cosmic strings 9

−1 −0.5 0 0.5 1

x 10
7

0

2

4

6

8

x 10
−6

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(a) j = 0

−1 −0.5 0 0.5 1

x 10
7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
−6

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(b) j = 1

−1 −0.5 0 0.5 1

x 10
7

0

1

2

3

4

5

x 10
−7

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(c) j = 2

−1 −0.5 0 0.5 1

x 10
7

0

0.5

1

1.5

2

x 10
−7

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(d) j = 3

−1 −0.5 0 0.5 1

x 10
7

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(e) j = 4

−1 −0.5 0 0.5 1

x 10
8

0

2

4

6

8

x 10
−8

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(f) j = 5

−1 −0.5 0 0.5 1

x 10
8

0

1

2

3

4

5

6

x 10
−8

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(g) j = 6

−1 −0.5 0 0.5 1

x 10
8

0

1

2

3

4

x 10
−8

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(h) j = 7

−1 −0.5 0 0.5 1

x 10
8

0

0.5

1

1.5

2

2.5

x 10
−8

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(i) j = 8

−1 −0.5 0 0.5 1

x 10
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
−8

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(j) j = 9

−1 −0.5 0 0.5 1

x 10
8

0

0.2

0.4

0.6

0.8

1

1.2

x 10
−8

P
s j(

W
s jρ
|G

µ
)

W s
jρ [K/Gµ]

(k) j = 10

Figure 7. Distribution of the cosmic string-induced CMB component in wavelet space, for each wavelet scale j (for parameters `max = 2048, N = 4, and
λ = 2). The GGD distribution fitted to the training map is shown by the solid red curve, while the raw distribution of the testing map is shown by the solid blue
histogram. The fitted GGD distribution of the training map matches the histogram of the testing map well for small scales (low j), indicating that the learnt
GGD accurately models the general statistical properties of cosmic string included CMB maps. As the scale becomes larger (higher j) the match becomes less
accurate due to cosmic variance. The distributions are also highly leptokurtic for small scales (low j), indicating that the string map is indeed sparse in wavelet
space, as expected. As the scale increases the distribution becomes less leptokurtic, also as expected. For these reasons we consider wavelet coefficients up to
and including scale j = 7 only in the subsequent analysis.

For numerical purposes we compute the log-likelihood, given by

ln P(Wd |Gµ) =
∑

j,ρ

ln P(Wd
jρ |Gµ) . (29)

The assumption of independence of wavelet coefficients is ap-
proximate. Nevertheless, the covariance of wavelet coefficients de-
cays rapidly with spatial separation (relative to the spatial size of
the wavelet considered) and is zero for non-adjacent scales (i.e. for
scales j and j′ such that | j − j′| > 2). We readdress the assumption
of independence later and introduce measures to account for this
approximation.

In practice, to compute the posterior distribution it is neces-
sary to first evaluate the likelihood for each individual wavelet co-
efficient by Eq. (27), before combining these terms to compute the
overall likelihood for the data by Eq. (28) or Eq. (29). In order
to avoid recalculating integrals for identical (or similar) values of
Wd

jρ, we precompute look-up-tables (LUTs) for Eq. (27), storing
the mapping from Wd

jρ to P(Wd
jρ |Gµ) for each j. When evaluating

the likelihood of a given dataset we linearly interpolate the wavelet

coefficients onto the LUT grid. These LUTs are plotted in Fig. 9.
Since the distributions Pg

j and Ps
j are properly normalised, the like-

lihood P(Wd
jρ |Gµ) for a given Gµ is also a normalised probability

distribution and should integrate to unity. To ensure the quadrature
used to evaluate Eq. (27) is accurate, we check that the precom-
puted distributions P(Wd

jρ |Gµ) integrate to unity (using the trapez-
ium rule), which is indeed the case provided a sufficient number of
samples is used to evaluate the integral.

3.4 String model comparison

To ascertain the overall evidence for cosmic strings we compare the
Bayesian evidence of the string mode Ms, which includes string and
inflationary induced CMB components, to the evidence of the stan-
dard inflationary model Mc. The Bayesian evidence of the string
model is given by

Es = P(Wd |Ms) =

∫
R

d(Gµ) P(Wd |Gµ,Ms) P(Gµ |Ms) , (30)
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Figure 8. Same as Fig. 7 but plotted on a log10 scale.

where now we make the dependence on the model explicit. The
Bayesian evidence of the CMB model is given by

Ec = P(Wd |Mc) =
∏

j,ρ

Pg
j (W

d
jρ) . (31)

For numerical purposes we compute the log-evidence, given by

ln Ec = ln P(Wd |Mc) =
∑

j,ρ

ln Pg
j (W

d
jρ) . (32)

In the absence of any prior information favouring either
model, the ratio of the model posterior probabilities is given by
the ratio of the Bayesian evidences:

P(Ms |Wd)
P(Mc |Wd)

=
Es

Ec . (33)

We compute the ratio of evidences to determine the model favoured
by the data. In practice we compute the difference in log-evidence
(also called the Bayes factor):

∆ ln E = ln(Es/Ec) = ln Es − ln Ec . (34)

The Jeffreys scale (Jeffreys 1961) is often used as a rule-
of-thumb when comparing models via their Bayes factor. While
we caution against using the Jeffreys scale as a strict test to clas-
sify models (since the boundaries of the scale are somewhat arbi-
trary), it can nevertheless be useful to gain some intuition for those
not familiar with Bayesian model selection. The log-Bayes factor
∆ ln E = ln(E(1)/E(2)) represents the degree by which model M(1) is

favoured over model M(2), assuming the models are equally likely
a priori. On the Jeffreys scale log-Bayes factors are given the fol-
lowing interpretation: 0 6 ∆lnE < 1 is regarded as inconclusive;
1 6 ∆lnE < 2.5 as significant; 2.5 6 ∆lnE < 5 as strong; and
∆lnE > 5 as conclusive (without loss of generality we have as-
sumed E1 > E2). For reference, a log-Bayes factor of 2.5 corre-
sponds to odds of approximately 1 in 12, while a factor of 5 corre-
sponds to odds of approximately 1 in 150.

4 ESTIMATION OF COSMIC STRING MAPS

In addition to estimating the evidence for the cosmic string model
and the posterior distribution of the string tension, we also re-
cover a direct estimate of the string-induced CMB component it-
self. To estimate the string contribution at the map level we develop
a Bayesian estimation approach in wavelet space, generalising the
technique described in Hammond et al. (2009) from a planar region
to the spherical full-sky setting. We first describe the string map es-
timation technique, before examining its properties as a Bayesian
thresholding approach to denoise the inflationary CMB component
from the observed data.
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Figure 9. Look-up-tables (LUTs) to precompute the mapping Wd
jρ to P(Wd

jρ |Gµ) of Eq. (27) for each j. Precomputing LUTs avoids recalculating integrals for

identical (or similar) values of Wd
jρ when computing the posterior distribution of the string tension. The distributions P(Wd

jρ |Gµ) are shown for different values
of Gµ by the light blue lines. For comparison, the Gaussian CMB distribution Pc

j(W
c
jρ) is shown by the heavy red line. As Gµ is reduced towards zero, the

distributions P(Wd
jρ |Gµ) approach Pc

j(W
c
jρ) (the light blue curves darken and approach the heavy red curve). The LUTs are normalised probability distributions

and integrate to unity. These plots are created using the testing string map and parameters `max = 2048, N = 4, J = 7, and λ = 2.

4.1 String map estimation

Our inference of the wavelet coefficients of the underlying string
map, and equivalently the string map itself, is encoded in the poste-
rior probability distribution P(W s

jρ |W
d). Various estimators can be

considered to recover the wavelet coefficients of string map from
their posterior distribution. We estimate the wavelet coefficients of
the string map from the mean of the posterior distribution, which
can be computed by

W
s
jρ =

∫
R

dW s
jρ W s

jρ P(W s
jρ |W

d) (35)

=

∫
R

dW s
jρ W s

jρ

∫
R

d(Gµ) P(W s
jρ |W

d,Gµ) P(Gµ |Wd) (36)

=

∫
R

d(Gµ) P(Gµ | d) W
s
jρ(Gµ) , (37)

where

W
s
jρ(Gµ) =

∫
R

dW s
jρ W s

jρ P(W s
jρ |W

d
jρ,Gµ) (38)

=

∫
R

dW s
jρ W s

jρ P(Wd
jρ |W

s
jρ,Gµ) P(W s

jρ |Gµ)

P(Wd
jρ |Gµ)

(39)

=

∫
R

dW s
jρ W s

jρ Pg
j (W

d
jρ −W s

jρ |Gµ) Ps
j(W

s
jρ |Gµ)

P(Wd
jρ |Gµ)

. (40)

Note that we replace P(Gµ |Wd) with P(Gµ | d) in Eq. (37) (since
there is a one-to-one relationship between a map and its wavelet co-
efficients) and appeal to Bayes theorem in Eq. (39). To summarise,
for each Gµ we compute a denoised set of wavelet coefficients
W

s
jρ(Gµ) by Eq. (40). We then combine these, taking the posterior

distribution of the string tension P(Gµ | d) into account, to compute
the overall denoised set of wavelet coefficients W

s
jρ by Eq. (37).

The denominator of Eq. (40) is given by Eq. (27) for which LUTs
have been precomputed already. Similarly, LUTs for the numerator

are precomputed for each j. Since we consider zero-mean signals,
these LUTs should integrate to zero, which indeed they do provided
a sufficient number of samples is used to evaluate the integrals. As
we assume independence of the wavelet coefficients, wavelet coef-
ficients are denoised pointwise.

Once we have recovered the denoised wavelet coefficients, a
string map can be recovered through an inverse wavelet transform:

s =W−1(W s)
. (41)

Alternatively, string maps could also be estimated for each Gµ
through an inverse wavelet transform:

s(Gµ) =W−1(W s
(Gµ)

)
. (42)

Since the wavelet transform is linear, the overall string map could
then be recovered by

s =

∫
R

d(Gµ) P(Gµ | d) s(Gµ) . (43)

While we use the string tension posterior distribution P(Gµ | d)
estimated in wavelet space by the approach outlined in Sec. 3.3,
one is free to substitute a posterior distribution estimated by alter-
native methods. The resulting recovered string maps could be con-
sidered as a pre-processed input to other map-based methods for
estimating the string tension from the non-Gaussian structure of
the string-induced CMB component, such as edge detection (e.g.
Lo & Wright 2005; Amsel et al. 2008; Stewart & Brandenberger
2009; Danos & Brandenberger 2010). The enhanced string compo-
nent and reduced background is likely to boost the effectiveness of
subsequent string tension estimation.

An estimate of the variance of wavelet coefficients of the string
component could also be performed in order to provide a measure
of the accuracy of the recovered string-induced component. For this
to be most useful it would be necessary to express the variance in
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map space, which could be computed by an inverse wavelet trans-
form with Ψ jρ and Φω′ substituted by |Ψ jρ|

2 and |Φω′ |
2, respectively

(for a related discussion see Rogers et al. 2016a). We leave this to
future work.

4.2 Bayesian thresholding

The hybrid wavelet-Bayesian string map estimation technique out-
lined in Sec. 4.1 can be viewed as a Bayesian thresholding approach
to denoise the observed data. The estimation of the wavelet coef-
ficients of the string signal by Eq. (40) can be viewed as a map-
ping from the wavelet coefficients of the data Wd

jρ to the estimated

string signal W
s
jρ(Gµ) for a given Gµ. One then marginalises over

the prior distribution for Gµ by Eq. (37). The thresholding mapping
functions defined by Eq. (40) are plotted in Fig. 10.

As the wavelet scale j increases larger scale features are
probed, for which the string distribution in wavelet space becomes
less leptokurtic (as shown in Table 1), i.e. more Gaussian. Conse-
quently, the thresholding functions become more linear as it be-
comes more difficult to distinguish the string and inflationary CMB
distributions. For the small scales, corresponding to low j, the
thresholding functions are less linear, with the energy in large co-
efficients more likely to be retained since these are more likely due
to the string component, while the energy of small coefficients is
more likely to be curtailed.

For each wavelet scale j, curves are plotted for different values
of Gµ, with Gµ approaching zero as the shade of the curve darkens.
As Gµ is reduced the amplitude of the string component is reduced
relative to the inflationary component and the thresholding curves
approach zero, as expected.

5 SIMULATIONS AND RESULTS

In this section, we demonstrate the application of our wavelet-
Bayesian framework for cosmic string inference to simulated
Planck observations. We do not optimise the parameters of the anal-
ysis and consider the standard dyadic wavelet scaling (i.e. λ = 2).
Alternative wavelet scalings, like that considered in Rogers et al.
(2016a) and Rogers et al. (2016b), are likely to improve perfor-
mance. The application to Planck data and the optimisation of the
parameters of the method is left to future work. We first describe
the CMB simulations performed, before presenting results from ap-
plying the framework outlined previously to these simulations for
differing values of Gµ. We show results estimating the posterior
distribution of the string tension, comparing the string model Ms

with the standard inflationary model Mc, and recovering maps of
the string-induced CMB component.

5.1 Simulations

Our simulations model idealised observations of combined string-
induced and inflationary CMB skies by the Planck satellite’s
143 GHz detectors, making heavy use of the s2 code. As high-
resolution, full-sky string simulations are computationally chal-
lenging to produce (see Sec. 3.2.3), we base all string simula-
tions on the single testing string simulation (Fig. 6(b)), smoothing
with a 7.3 arcmin Gaussian beam and rescaling by the appropri-
ate T0Gµ (assuming the mean CMB temperature of T0 = 2.725
K; Mather et al. 1999). We do not touch the training string simu-
lation (Fig. 6(a)) since this was used to fit the GGD distributions

modelling string-induced CMB components. We model the CMB
and noise as pure Gaussian random fields and hence draw realisa-
tions directly from their combined power spectrum, using a band-
limit of `max = 2500. We calculate the CMB power spectrum using
camb10 (Lewis et al. 2000), assuming the best-fit cosmology from
Planck’s analysis of a compilation of CMB, lensing, baryon acous-
tic oscillation, supernova and expansion datasets (Planck Collabo-
ration XIII 2016). To create the final power spectrum, we multiply
the CMB power spectrum by the instrumental beam and healpix
window function, and then add white noise at 4.3 µK per beam-
sized pixel (the final sensitivity of Planck’s 143 GHz channel). The
resulting power spectra are shown in Fig. 1. All maps are simulated
at healpix resolution Nside = 2048.

Examples of simulated CMB maps, with and without a string-
induced component, are plotted in Fig. 11 for a string tension of
Gµ = 5 × 10−7. It is not possible to determine the presence cosmic
strings by eye.

5.2 String tension estimation

We perform the analysis outlined in Sec. 3.3 on a number of simula-
tions with embedded string contributions of varying string tension
Gµ to estimate the posterior distribution of the string tension.

In the framework presented in Sec. 3.3 we assume wavelet
coefficients are independent. In practice, wavelet coefficients are
not independent, but the covariance of wavelet coefficients does
decay rapidly with spatial separation (relative to the spatial size
of the wavelet considered) and is identically zero for non-adjacent
scales (i.e. for scales j and j′ such that | j − j′| > 2). To better ac-
count for the covariance of wavelet coefficients, we fold into the
analysis only those wavelet coefficients that are essentially uncor-
related. To achieve this, we compute a correlation length for each
wavelet scale, which we define by the fifth zero crossing of the the-
oretical wavelet covariance when assuming an inflationary CMB
power spectrum (for the derivation of the theoretical wavelet co-
variance see McEwen et al. 2016). We then downsample wavelet
coefficients to the resolution defined by the correlation length and
use the resulting downsampled maps of wavelet coefficients, for
non-adjacent wavelet scales j only, when computing the full log-
posterior by Eq. (29).

Here and subsequently we consider a dyadic wavelet scal-
ing with λ = 2, as discussed previously. We consider a maximum
wavelet scale of J = 7, as also discussed previously, since for these
wavelet scales the GGD modelling the string component is highly
leptokurtic (see Sec. 3.2.3). For the string tension Gµ, we assume a
uniform prior over the domain (1 × 10−10, 4 × 10−6), sampled with
200 uniformly spaced gridpoints. When constructing the LUTs, we
evaluate tables sampled over a domain of 1000 uniformly spaced
gridpoints for the wavelet coefficients of the data and use 9000 uni-
formly spaced gridpoints for the string wavelet coefficients when
computing integrals (by the trapezium rule). The limits of the coef-
ficient ranges are specified by the minimum and maximum values
of the wavelet coefficients of the data. As discussed, we perform a
number of tests to ensure the LUTs are evaluated accurately.

Since the string tension is a scaling parameter, an uninforma-
tive (Jeffreys) prior for the string tension would be a log-uniform
prior. However, for this first work we instead choose to adopt a
uniform prior so that the string tension posterior and likelihoods

10 http://camb.info

c© 2016 RAS, MNRAS 000, 1–18

http://camb.info


Wavelet-Bayesian inference of cosmic strings 13

−5 0 5

−6

−4

−2

0

2

4

6

W
s jρ
(G

µ
)
[µ
K
]

W d
jρ [µK]

(a) j = 0

−15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

W
s jρ
(G

µ
)
[µ
K
]

W d
jρ [µK]

(b) j = 1

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

W
s jρ
(G

µ
)
[µ
K
]

W d
jρ [µK]

(c) j = 2

−50 0 50
−30

−20

−10

0

10

20

30

W
s jρ
(G

µ
)
[µ
K
]

W d
jρ [µK]

(d) j = 3

−60 −40 −20 0 20 40 60
−40

−30

−20

−10

0

10

20

30

40

W
s jρ
(G

µ
)
[µ
K
]

W d
jρ [µK]

(e) j = 4

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

W
s jρ
(G

µ
)
[µ
K
]

W d
jρ [µK]

(f) j = 5

−50 0 50

−60

−40

−20

0

20

40

60

W
s jρ
(G

µ
)
[µ
K
]

W d
jρ [µK]

(g) j = 6

−50 0 50

−80

−60

−40

−20

0

20

40

60

80

W
s jρ
(G

µ
)
[µ
K
]

W d
jρ [µK]

(h) j = 7

Figure 10. Bayesian thresholding functions for each wavelet scale j. Each curve in a given panel shows a different value of Gµ, with Gµ approaching zero as
the shade of the curve darkens. As Gµ is reduced the amplitude of the string contribution is reduced relative to the inflationary component and the thresholding
curves approach zero, as expected. As the wavelet scale j increases, larger scale features are probed by the wavelet and the thresholding functions become
more linear since the statistical distributions of the string and inflationary CMB components become more similar (see text for further discussion).

correspond, which can be useful for gaining further intuition re-
garding the effectiveness of the method. By using a uniform prior
the impact of alternative priors can be approximately inferred by a
kind of “posterior-by-eye” approach. In future, for applications to
data, a log-uniform prior or indeed other priors can be considered.

The estimated posterior distributions are shown in Fig. 12 for a
representative subset of the ground truth string tension values used
in generating the simulated data. The full set of string tension val-
ues considered is shown in the first column of Table 2. An estimate
of Gµ and the corresponding error, for each simulation, is recovered
from the mean and the standard deviation of the posterior distribu-
tion and also shown Table 2. The ground truth string tension values
used to embed the string-induced CMB component in the simulated
data are recovered accurately above ∼ 5×10−7. Below this approxi-
mate transition value the recovered estimates are biased high, likely
due to unmodelled residual correlations, indicating the limit of the
sensitivity of this unoptimised method.

5.3 String model comparison

For the same set of simulations we compute the Bayesian evidence
ratio of the string model Ms and standard inflationary model Mc,
performing the calculation outlined in Sec. 3.4. Again, we fold into
the analysis only those wavelet coefficients that are essentially un-
correlated, following the approach outlined in Sec. 5.2.

The computed evidence ratios are shown in Table 2, where a
positive value favours the string model Ms over the standard in-
flationary model Mc. For values of the string tension Gµ greater
than ∼ 5 × 10−7 the string model is preferred. Interestingly, this is
the same approximate transition value of Gµ as found for the es-
timation of the string tension in Sec. 5.2, further confirming the
sensitivity of the (unoptimised) method for statistical inference.

Table 2. String tension values considered in simulations, with recovered
estimates and corresponding Bayesian evidence ratio (positive evidence
favours the string model Ms). The ground truth string tension is recovered
accurately above ∼ 5 × 10−7 but is biased high below this transition region.
The Bayesian evidence ratio favours the string model also above ∼ 5×10−7

but favours the standard inflationary model below this transition, illustrating
the sensitivity of the (unoptimised) method.

Gµ truth / 10−7 Gµ estimate / 10−7 Evidence ratio [loge]

30.0 29.58 ± 0.45 2 020
20.0 19.60 ± 0.47 563
10.0 9.90 ± 0.58 51.4
9.00 8.97 ± 0.61 34.6
8.00 8.06 ± 0.65 21.9
7.00 7.18 ± 0.69 12.5
6.00 6.36 ± 0.73 5.88
5.00 5.63 ± 0.75 1.19
4.00 5.06 ± 0.75 −1.86
3.00 4.66 ± 0.73 −3.87

5.4 String map recovery

While we have examined the effectiveness of our wavelet-Bayesian
method for statistical inference in the previous subsections, a sig-
nificant advantage of our approach is the ability to also recover esti-
mates of any embedded string-induced CMB component at the map
level. For the same set of simulations we recover estimated string
maps following the calculations outlined in Sec. 4.

Maps of the recovered string-induced CMB component are il-
lustrated in Fig. 13. String maps are recovered well for large values
of Gµ. As Gµ is reduced, the fidelity of the recovered maps is re-
duced as small scale features are washed out.

To assess the performance of the recovery of string maps
quantitatively we plot in Fig. 14 the root-mean-squared (RMS) er-
ror and the signal-to-noise ratio (SNR) to quantify the error be-
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-500 500µK

(a) Inflationary contribution only

-500 500µK

(b) Inflationary and string-induced contributions

Figure 11. Simulated CMB maps with and without a string-induced com-
ponent. Panel (a) includes an inflationary CMB contribution only, whereas
panel (b) includes an inflationary contribution and the string-induced con-
tribution shown in Fig. 6(b), scaled to Gµ = 5 × 10−7. It is not possible to
determined the presence of the string-induced component by eye.

tween the recovered string map and the ground truth string map.
The SNR is defined as the ratio of the RMS value of the ground
truth string map to the RMS error. We compute these error metrics
for the simulations performed with varying values of the string ten-
sion Gµ. For comparison, results are also shown when not directly
estimating the string-induced component. In this case, we simply
consider the residuals between the observed data and the ground
truth string maps. The RMS error is then simply given by the RMS
of the inflationary CMB component and noise, hence the constant
dashed blue curve in Fig. 14(a). As Gµ is reduced, though it is dif-
ficult to recover small scale string features (as shown in Fig. 13)
the RMS error of the estimated string components is nevertheless
reduced: by greater than 200 µK for the lowest values of Gµ consid-
ered. From the SNR plotted in Fig. 14(b) it is clear that the relative
improvement provided by the string estimation approach is reason-
ably constant over much of the domain considered.

Recall that, as discussed in Sec. 4.1, in order to recover the
string-induced CMB component a posterior distribution for the
string tension is required. Here, we adopt the posterior distributions
recovered in Sec. 5.2 and shown in Fig. 12; however, if an alterna-
tive method provides a better estimate of the posterior distribution
then the alternative posterior distribution can be substituted.

6 CONCLUSIONS

Cosmic strings are a well-motivated extension to the standard cos-
mological model and could induce a subdominant component in
the anisotropies of the CMB. Detecting such a component would
provide a direct probe of corresponding symmetry breaking phase
transitions in the early Universe at very high energy scales. How-
ever, due to the weak nature of any string component its detection
presents a significant observational challenge.

We present a hybrid wavelet-Bayesian framework for cosmic
string inference, constructing a Bayesian analysis in wavelet space
where the string-induced CMB component has very different sta-
tistical properties to the inflationary component. We learn and ex-
ploit the complex non-Gaussian structure of string-induced CMB
contributions, rather than considering (insufficient) summary statis-
tics like many alternative methods (e.g. the kurtosis), for which
the origin of any non-Gaussian component cannot be rigorously
determined. Our approach allows the full posterior distribution of
the string tension to be estimated, from which a best estimate of
the string tension and an associated error can be computed. The
Bayesian evidence ratio comparing the string model, including an
inflationary component and a subdominant string-induced compo-
nent, and the standard inflationary model can also be computed.
Moreover, it is also possible to recover an estimate of the string-
induced component in the CMB at the map level.

We demonstrate the application of our wavelet-Bayesian
framework and evaluate its performance using idealised simula-
tions of CMB observations made by the Planck satellite, where a
string component is embedded for a range of values of the string
tension Gµ. For values of the string tension Gµ above ∼ 5 × 10−7,
we recover accurate estimates of its posterior distribution, which
can be used to provide accurate point estimates of the string ten-
sion and associated error. The Bayesian evidence values computed
also correctly favour the string model for values of the string ten-
sion Gµ above ∼ 5 × 10−7, further highlighting the sensitivity of
the method. The performance of our approach compares favourably
with current constraints obtained using the same string simulations
(that obtain the constraint Gµ < 7.8 × 10−7; Planck Collabora-
tion XXV 2014) and, moreover, is based on a principled statisti-
cal framework. A more robust and principled analysis is inevitably
more conservative than less well-motivated alternatives but, nev-
ertheless, we find our method generally compares favourable with
other map-based techniques. While we consider slightly idealised
Planck simulations we have not yet optimised the parameters of
the analysis (alternative wavelet scalings, for example, are likely to
improve performance; cf. Rogers et al. 2016a,b).

We find that the embedded string maps are recovered accu-
rately for large values of the string tension Gµ. As Gµ is reduced,
small-scale features in the recovered string maps are washed out,
but the RMS error of the recovered maps is nevertheless reduced
considerably. While maps of the string-induced CMB component
are of interest in their own right, they can also be used as pre-
processed inputs for alternative techniques to estimate the string
tension from the non-Gaussian structure of the string-induced
CMB component, such as computing the gradient. We leave post-
processing of the recovered string maps for further work.

This is one of many areas to be considered in future work.
First, more realistic Planck simulations will be considered, along
with a mask to remove foreground emission (masking can be inte-
grated in the wavelet analysis in a straightforward manner, follow-
ing the approach of, e.g., McEwen et al. 2005, 2007b; Leistedt et al.
2017). Second, the parameters of the analysis will be optimised for
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Figure 12. Posterior distributions of the string tension Gµ recovered from simulations. Each panel shows the recovered posterior distribution for a different
ground truth value of Gµ as a solid blue curve; the ground truth value of Gµ is indicated by a vertical red dashed line. The ground truth value of Gµ is estimated
accurately above ∼ 5 × 10−7. For lower string tensions the posterior distribution is biased high, illustrating the sensitivity of the (unoptimised) method.

Planck observations (cf. Rogers et al. 2016a,b). Third, the steerabil-
ity of scale-discretised wavelets will be exploited to provide more
accurate inference when computing the posterior distribution of the
string tension and the Bayesian evidence (cf. Planck Collaboration
XXV 2014). Fourth, an estimate of the standard deviation of the re-
covered string map will be developed to characterise its accuracy,
as outlined in Sec. 4.1. Fifth, techniques will be developed to better
model the full covariance structure of signals in wavelet space.

Our framework will in future be applied to observational data
from Planck and other CMB experiments to provide constraints on
the string tension that are based on a principled statistical analy-
sis of the non-Gaussian structure of string-induced CMB contribu-
tions. While we focus in the current article on cosmic strings, the
framework can also be adapted to other settings, such as other com-
ponents embedded in the CMB.
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Figure 13. Recovered string-induced CMB maps for various ground truth values of the string tension Gµ. Ground truth maps are shown on the left and
recovered maps on the right. String-induced CMB contributions are recovered well for large values of Gµ. As Gµ is reduced, the fidelity of the recovered maps
is reduced as small scale features are washed out.
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Figure 14. Error metrics quantifying the difference between the recovered
string-induced CMB component and the ground truth map (solid red curve).
For comparison, differences without estimating the string-induced compo-
nent are also shown (dashed blue curve).
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Schröder P., Sweldens W., 1995, in Computer Graphics Proceed-
ings (SIGGRAPH ‘95), 161–172

Simoncelli E.P., Adelson E.H., 1996, in IEEE International Con-
ference on Image Processing, volume 1, IEEE, 379–382

Starck J., Moudden Y., Bobin J., 2009, Astron. & Astrophys., 497,
931, arXiv:0902.0574

Starck J.L., Aghanim N., Forni O., 2004, Astron. & Astrophys.,
416, 9, astro-ph/0311577

Starck J.L., Moudden Y., Abrial P., Nguyen M., 2006, Astron. &
Astrophys., 446, 1191, astro-ph/0509883

Stewart A., Brandenberger R., 2009, J. Cosmol. Astropart. P., 2,
009, 0809.0865

Sweldens W., 1997, SIAM J. Math. Anal., 29, 2, 511
Varshalovich D.A., Moskalev A.N., Khersonskii V.K., 1989,

Quantum theory of angular momentum, World Scientific, Sin-
gapore
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