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ABSTRACT
Next-generation radio interferometers like the Square Kilometer Array have the potential to unlock scientific discoveries thanks
to their unprecedented angular resolution and sensitivity. One key to unlocking their potential resides in handling the deluge and
complexity of incoming data. This challenge requires building radio interferometric imaging methods that can cope with the
massive data sizes and provide high-quality image reconstructions with uncertainty quantification (UQ). This work proposes a
method coined QuantifAI to address UQ in radio-interferometric imaging with data-driven (learned) priors for high-dimensional
settings. Our model, rooted in the Bayesian framework, uses a physically motivated model for the likelihood. The model exploits
a data-driven convex prior, which can encode complex information learned implicitly from simulations and guarantee the log-
concavity of the posterior. We leverage probability concentration phenomena of high-dimensional log-concave posteriors that
let us obtain information about the posterior, avoiding MCMC sampling techniques. We rely on convex optimisation methods
to compute the MAP estimation, which is known to be faster and better scale with dimension than MCMC sampling strategies.
Our method allows us to compute local credible intervals, i.e., Bayesian error bars, and perform hypothesis testing of structure
on the reconstructed image. In addition, we propose a novel blazing-fast method to compute pixel-wise uncertainties at different
scales. We demonstrate our method by reconstructing radio-interferometric images in a simulated setting and carrying out fast
and scalable UQ, which we validate with MCMC sampling. Our method shows an improved image quality and more meaningful
uncertainties than the benchmark method based on a sparsity-promoting prior. QuantifAI’s source code and scripts for the
numerical experiment of this paper are available from github.com/astro-informatics/QuantifAI.

Key words: Machine Learning – Uncertainty Quantification – Radio interferometric imaging

1 INTRODUCTION

Radio astronomy plays a crucial role in expanding our understand-
ing of the Universe, offering a unique perspective on astrophysical
and cosmological phenomena. Among the transformative tools in an
astronomer’s toolkit, radio interferometric (RI) imaging stands out
as an indispensable technique. Aperture synthesis and radio inter-
ferometry (Thompson et al. 2017) allow us to achieve high angular
resolutions providing immense power to resolve objects. Further-
more, radio frequency signals are only weakly attenuated by our
atmosphere, allowing for observations at the Earth’s surface. The
unparalleled angular resolution, high sensitivity and the different
phenomena emitting in the radio wavelength regime make RI an
ideal candidate to reshape our understanding of the Universe and
push the boundaries of science.

The advent of the Square Kilometre Array (SKA, Dewdney et al.
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2009) heralds a new era in radio astronomy (Braun et al. 2015) span-
ning the study from the epoch of reionisation and fast radio bursts
to galaxy evolution and dark energy. SKA’s vast collecting area and
sensitivity promise to revolutionise our observational capabilities,
opening doors to discoveries we can barely imagine today. However,
this transformative potential comes with the formidable computa-
tional challenge of processing and making sense of the unprecedented
volume of SKA-generated data. Developing and implementing algo-
rithms that can efficiently handle SKA’s data deluge is a challenge.
In addition, achieving the high reconstruction performance required
to unlock SKA’s full potential is a significant obstacle in the SKA’s
data processing requirements.

The aperture synthesis techniques in RI probe the sky by acquiring
specific Fourier measurements, which results in incomplete cover-
age of the Fourier domain of the sky’s image of interest. Adding
observational noise to the incomplete Fourier coverage makes the
problem of estimating the underlying sky image an ill-posed inverse
problem, which we know as RI imaging. Having a way to quan-
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tify the uncertainty in the image reconstructions becomes essential
given the uncertainties involved in the RI imaging problem. To make
scientifically sound inferences and informed decisions, we need the
ability to quantify these uncertainties rigorously. This motivates the
development of uncertainty quantification (UQ) methods tailored to
the complexities of radio interferometric data, where scalability and
performance play a central role. We need to ensure that our recon-
structions are not only insightful but also trustworthy.

In a nutshell, we are in the quest for RI imaging methods that can
deliver precision with uncertainty quantification and that are highly
scalable. Existing methods only tackle some of these three require-
ments. The widely used CLEAN algorithm (Högbom 1974) built its
success on scalability and fast inference. CLEAN and its extensions
(Cornwell 2008; Offringa et al. 2014; Offringa & Smirnov 2017)
have been continuously used in many RI imaging pipelines since its
inception. Despite offering limited imaging quality and reconstruc-
tion artefacts compared to other approaches, CLEAN stands out due
to its scalability. More recent approaches leverage compressed sens-
ing theory, relying on sparse priors (often in wavelet representations)
and convex optimisation techniques (Wiaux et al. 2009; McEwen &
Wiaux 2011; Carrillo et al. 2012, 2014; Dabbech, A. et al. 2015;
Dabbech et al. 2018; Pratley et al. 2017). These methods have been
shown to improve the reconstruction quality at the expense of in-
creased computational complexity. Considerable work has been di-
rected to parallelisation and acceleration efforts for sparsity-based
methods (Onose et al. 2016; Pratley et al. 2019b; Pratley et al. 2019a;
Thouvenin et al. 2022a,b).

The deep learning revolution has introduced a powerful way to en-
code complex image priors in neural networks, which may be used to
solve complex high-dimensional inverse problems. This data-driven
or learned paradigm has gained a lot of traction across imaging land-
scape problems, including RI imaging (Allam 2016; Terris et al.
2022; Aghabiglou et al. 2023; Mars et al. 2023b). Learned meth-
ods can improve the reconstruction quality with respect to hand-
crafted priors, such as sparsity-based wavelet priors, as well as pro-
vide acceleration (Terris et al. 2022; Mars et al. 2023b,a) to convex
optimisation-based methods.

Unfortunately, none of the RI imaging methods mentioned,
learned, sparsity-based or CLEAN-based, provide UQ tools. Cai et al.
(2018a,b) proposed methods for UQ on RI imaging problems. Cai
et al. (2018a) leverages proximal MCMC methods (Pereyra 2016) to
provide support for sparsity-promoting priors. The proposed method
allows them to reconstruct the image and provide UQ by sampling
the posterior probability distribution. The drawback of the method is
the high computational cost suffered by all MCMC sampling tech-
niques. The companion paper, Cai et al. (2018b), overcomes the need
for posterior sampling with maximum-a-posteriori (MAP) based UQ
(Pereyra 2017) relying on convex optimisation techniques. The new
method (Cai et al. 2018b) provides a significant speed-up with respect
to the sampling-based method (Cai et al. 2018a), but its reconstruc-
tion quality is limited to sparsity-promoting priors.

In this article, we delve into the forefront of RI imaging and
propose a method coined QuantifAI, based on data-driven priors,
capable of delivering high-quality reconstructions with uncertainty
quantification and being highly scalable. The method relies on the
mathematically principled Bayesian framework to provide an under-
standing of the uncertainties through the posterior distribution. By
restricting our model to log-concave posteriors we can exploit re-
cent MAP-based UQ techniques (Pereyra 2017), providing scalable
optimisation-based UQ. We build upon recent advances in neural-
network-based convex regularisers (Goujon et al. 2023b), allowing
us to obtain state-of-the-art reconstruction quality and more mean-

ingful uncertainties. On top of the hypothesis tests of structure on the
reconstructed image, we propose a blazing-fast method to estimate
pixel-wise uncertainties as a function of scale.

The remainder of this article is organised as follows. In Section 2,
we start by reviewing the RI imaging and techniques for the result-
ing inverse problem. Section 3 describes QuantifAI, the proposed
method, and the RI image reconstruction algorithm. In Section 4,
we introduce the core of our scalable UQ and the different UQ tech-
niques it allows. The experimental results, including the performance
of QuantifAI reconstruction and its UQ techniques, are presented in
Section 5. We provide concluding remarks and present some future
perspectives in Section 6.

2 RADIO INTERFEROMETRIC IMAGING

In this section, we start by reviewing the RI imaging inverse problem
and discuss approaches to tackle it, including sparsity-based regu-
larisation, the CLEAN method, and learned approaches. We then
introduce the Bayesian framework elements needed such as MAP
estimation and proximal MCMC sampling algorithms that will be
later used as validation.

2.1 Radio interferometry

The interferometric measurement equation for a radio telescope
(Thompson et al. 2017) in the monochromatic setting relates our
observations represented by the visibility function Y to the sky
brightness X, which we want to reconstruct,

Y(𝑢, 𝑣, 𝑤) =
∬ X(𝑙, 𝑚) A(𝑙, 𝑚)

√
1 − 𝑙2 − 𝑚2

(1)

× exp
[
−2𝜋i𝑤

(√︁
1 − 𝑙2 − 𝑚2 − 1

)]
exp [−2𝜋i (𝑙𝑢 + 𝑚𝑣)] d𝑙d𝑚 ,

where u = (𝑢, 𝑣, 𝑤) are the interferometer baseline coordinates with
units depending on the observation wavelength, l = (𝑙, 𝑚, 𝑛) are co-
sine sky coordinates restricted to the unit sphere, and A includes
direction-dependent effects (DDEs) like the primary beam of the
dishes. The previous general model allows us to consider different
DDEs through A and non-coplanar effects through the exponential
term in𝑤. These effects become considerable when considering wide
fields of view and long baselines. There exists a rich body of litera-
ture incorporating such effects, e.g., Smirnov, O. M. (2011a,b,c,d);
Thompson et al. (2017), and there are scalable algorithms that take
them into account, e.g., Pratley et al. (2019b).

In this article, for the sake of simplicity but without loss of gen-
erality, we assume the coplanar setting, where the antennas are lo-
cated in the same 𝑤 plane. We also assume that we observe a small
field of view such that 1 − 𝑙2 − 𝑚2 ≈ 1. Consequently, we have
exp

[
−2𝜋i𝑤

(√
1 − 𝑙2 − 𝑚2 − 1

)]
≈ 1, and Equation 1 reduces to

Y(𝑢, 𝑣) ≈
∬

X(𝑙, 𝑚) A(𝑙, 𝑚) exp [−2𝜋i (𝑙𝑢 + 𝑚𝑣)] d𝑙d𝑚 . (2)

From the previous equation, we can notice the remarkable result of
Y(𝑢, 𝑣) = F (AX)(𝑢, 𝑣) where F is the two-dimensional Fourier
transform.

To further simplify the problem, we will avoid using the contin-
uous Y and X and work with their discrete counterparts, 𝒙 and 𝒚,
respectively. The observational model we study for our RI imaging
problem writes

𝒚 = 𝚽𝒙 + 𝒏, (3)
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where 𝒚 ∈ C𝑀 are the 𝑀 observed complex visibilities, 𝒙 ∈ R𝑁

is the discrete sky brightness sampled on a 𝑁 point grid, and
𝚽 ∈ C𝑀×𝑁 is the linear measurement operator that models the
acquisition process. Without loss of generality, the observational and
instrumental noise 𝒏 ∈ C𝑀 is assumed to be independent and iden-
tically distributed (iid) white Gaussian noise with zero mean and
standard deviation 𝜎. If the noise is not white, we can incorporate
a noise whitening matrix in the 𝚽 operator such that the previous
white noise assumption holds.

Each pair of antennas provides us with one visibility, which is
a noisy Fourier component of the intensity image. Using an array
of 𝑛 radio antennas allows us to sample

(𝑛
2
)
= (𝑛2 − 𝑛)/2 points

in the 𝑢𝑣-plane (or Fourier plane). The distribution of these points
depends on the configuration of the radio antenna array. If different
time intervals are considered, the Earth’s rotation can be exploited
to increase the number of 𝑢𝑣 points. The 𝑢𝑣 coverage is incomplete
in all practical cases, and the measurements are noisy. Therefore, the
linear operator 𝚽 is ill-posed. If we also consider a large number of
measurements, recovering 𝒙 from 𝒚 becomes a challenging inverse
problem.

The most basic reconstruction of 𝒙 is often referred to as the
dirty reconstruction �̂�dirty. This estimation is obtained by applying a
pseudo-inverse of 𝚽 to the visibilities 𝒚. To obtain a higher fidelity
solution to the RI imaging inverse problem, we must regularise the
problem by incorporating some prior information about the desired
solutions 𝒙. A broad range of methods can be characterized by what
type of prior information is used to regularise the inverse problem
and which algorithm is used to compute the reconstructed image �̂�.

2.2 Sparsity-based regularisation

The last two decades have brought us a great number of RI imag-
ing methods based on sparse representations. The prior information
exploited is that the solution 𝒙 is known to be sparsely represented
in some bases or dictionaries. The bases are often built using multi-
scale wavelets, or a dictionary is constructed with a collection of
wavelets (Mallat 2008). We can represent our image 𝒙 in a dictio-
nary 𝚿 ∈ C𝑁×𝐿 ,

𝒙 = 𝚿𝒂 =

𝐿∑︁
𝑖=1

𝚿𝑖𝑎𝑖 , (4)

where 𝒂 ∈ C𝐿 is a vector of coefficients of 𝒙 weighting the corre-
sponding dictionary atoms of 𝚿. The assumption made to regularise
the inverse problem is that 𝒂 is sparse or compressible, meaning that
most of the coefficients are zero-valued or near zero, respectively. An
array 𝒂 is called 𝑘-sparse if it has only 𝑘 non-zero elements, which
can be written as ∥𝒂∥0 = 𝑘 , where ∥ · ∥0 denotes the ℓ0 pseudonorm.

Sparsity should be ideally enforced through the ℓ0 pseudonorm,
which is non-convex. Consequently, a convex relaxation to the ℓ1
norm is used, which is a sparsity-promoting norm. The optimisation
problem is formulated such that its solution coincides with the inverse
problem solution. Therefore, the inverse problem can be tackled with
an optimisation algorithm. The optimisation objective comprises two
competing terms: (i) a data-fidelity term 𝑓 (·) that promotes consis-
tency with the observed visibilities and depends on the statistics of
the noise 𝒏; and (ii) a regularisation term 𝑟 (·) that encodes our prior
knowledge of 𝒙. The optimisation problem reads

�̂� = argmin
𝒙∈R𝑁

𝑓 (𝒙) +
∑︁
𝑘

_𝑘𝑟𝑘 (𝒙) , (5)

where we are using a sum of regularisation terms 𝑟𝑘 , each with its

corresponding regularisation strength parameter _𝑘 . Substituting the
RI data fidelity and sparsity-enforcing regularisation in an overdeter-
mined wavelet dictionary Ψ terms into Equation 3 we obtain

�̂� = argmin
𝒙∈R𝑁

1
2𝜎2 ∥𝒚 −Φ𝒙∥2

2 + _
Ψ†𝒙


1 , (6)

where 𝜎 is the noise standard deviation.
The previous formulation is referred to as unconstrained. Other

works consider the constrained formulation, which minimises the ℓ1
term with respect to a hard ℓ2-ball constraint over 𝒚 with a radius of
𝜖 , which is related to the noise’s 𝜎 (Carrillo et al. 2012; Pratley et al.
2017). In this article, we will focus on the unconstrained formulation
as it has a natural Bayesian interpretation. Obtaining the solution
from Equation 6 involves solving a convex optimisation problem,
where we have the sum of a differentiable and a non-differentiable
term. Proximal algorithms (Parikh & Boyd 2014) are well suited to
tackle such optimisation problems. Recent developments brought us
a wide collection of proximal optimisation algorithms, such as the
forward-backward (FB) algorithm (Combettes & Pesquet 2009), the
FISTA algorithm (Beck & Teboulle 2009), the alternating direction
method of multipliers (ADMM, Boyd et al. 2011), and the primal-
dual forward-backward algorithm (Chambolle & Pock 2011; Condat
2013), to mention a few. A rich literature exists exploiting the afore-
mentioned concepts to tackle the RI imaging problem (Wiaux et al.
2009; McEwen & Wiaux 2011; Carrillo et al. 2012, 2014; Onose
et al. 2016; Pratley et al. 2017, 2019b; Pratley et al. 2019a; Pratley
& McEwen 2019; Cai et al. 2018b). For example, the Sparsity Av-
eraging Reweighted Analysis (SARA) family of methods (Carrillo
et al. 2012) use an over-complete dictionary composed of a con-
catenation of the Dirac basis and the first eight Daubechies wavelets
(Daubechies 1992) and has shown good performance in RI imaging.

2.3 CLEAN

Precursor of RI image reconstructions, the CLEAN algorithm (Hög-
bom 1974) is a highly successful RI imaging method and it is still be-
ing used (Collaboration et al. 2019a,b) despite various negative char-
acteristics. The CLEAN algorithm is a non-linear iterative method
that assumes a sparse sky model. CLEAN iteratively removes the
contribution of the brightest source convolved with the instrument’s
point spread function or dirty beam. This method can be interpreted
as a matching pursuit algorithm (Wiaux et al. 2009), or an ℓ0 regu-
larisation with a basis composed of a sum of Dirac spikes. Several
extensions of CLEAN have been developed over time (Bhatnagar &
Cornwell 2004; Cornwell 2008; Stewart et al. 2011; Offringa et al.
2014; Offringa & Smirnov 2017) achieving better reconstruction
performance. See Rau et al. (2009) for a review of CLEAN-based
algorithms.

On top of a very early introduction, the success of CLEAN resides
in its scalability, i.e., the computational complexity with respect to
the amount of data processed. However, CLEAN has been shown
to produce artefacts when point sources do not well describe the
underlying sky model limiting CLEAN’s image quality and justify-
ing the need for more advanced techniques, e.g. based on Section
2.2. CLEAN often requires manual intervention, making its use less
practical. Furthermore, CLEAN and its extensions do not provide
meaningful uncertainty quantification of its reconstruction.

2.4 Learned approaches

The advent of deep learning models has affected many imaging ap-
plications, and RI imaging is no exception. Handcrafted models and
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priors are limited in the information they can capture or represent.
Learned or data-driven methods can encode complex information
existing in the data, e.g., astrophysical simulations, used in their
training. In general, these approaches produce reconstructions with
improved quality, a computational speed-up, or both. These reasons
make learned approaches very relevant to the RI imaging reconstruc-
tion problem. However, there are issues regarding the robustness of
learned methods to data distribution shifts (Hendrycks et al. 2020)
and scalable methods for uncertainty quantification to the reconstruc-
tion.

Allam (2016) proposed a learned method for RI imaging based
on convolutional neural networks (Dong et al. 2016) originally con-
sidered for super-resolution. The approach consists of learning to
post-process dirty images with variants for both, known and un-
known PSF. More recently, Gheller & Vazza (2021) proposed to use
a convolutional denoising autoencoder to learn to post-process radio
images, e.g., the dirty image or CLEAN’s output. Connor et al. (2022)
proposed a residual deep neural network (DNN) coined POLISH that
works as a learned post-processing and super-resolution network. The
DNN is based on the architecture proposed in Yu et al. (2018) and
takes as input dirty images at different wavelengths and resolutions.
POLISH outputs a clean image at a higher resolution for each wave-
length and shows a better reconstruction quality than CLEAN. The
proposed method has been applied to simulations from the upcoming
Deep Synoptic Array-2000 (Hallinan et al. 2019) and real data from
the Very Large Array (VLA, Perley et al. 2011).

The Plug-and-Play (PnP) framework (Venkatakrishnan et al. 2013)
provides a way to incorporate a deep learning model into a modern
optimisation algorithm. The central idea is to replace a proximal
regularisation term with a denoising deep neural network. Ryu et al.
(2019) studied conditions for the convergence of PnP algorithms.
Pesquet et al. (2021) proposed a new term for the denoiser’s training
loss that enforces the firm nonexpansiveness of the denoiser, which
is usually deep learning-based. This training procedure allows the
denoiser to suit a PnP framework with theoretical convergence con-
ditions. The PnP framework with the nonexpansiveness enforced to
the deep learning-based denoiser has been applied to the RI imaging
problem in Terris et al. (2022), where the approach has been called
AIRI for Artificial Intelligence for Regularisation in RI imaging.
The approach achieved similar or better performance than compet-
ing prior-based approaches whilst providing a significant acceleration
potential. The AIRI method was later validated on observations from
the Australian Square Kilometre Array Pathfinder (ASKAP, Wilber
et al. 2023).

Two learned approaches for an interferometric-based imager
named Segmented Planar Imaging Detector for Electro-Optical Re-
connaissance (SPIDER) were proposed by Mars et al. (2023b). The
first approach consists of a learned post-processing step from the
dirty reconstruction based on a convolutional U-Net architecture
(Ronneberger et al. 2015). The second approach consists of a learned
multiscale iterative method coined GU-Net, which incorporates the
measurement operator to include measurement information at the
different steps and scales of the method. GU-Net is more efficient
than standard unrolling methods due to its multi-scale nature. The nu-
merical results show an improved reconstruction quality and a faster
convergence than proximal optimisation-based methods. In the fol-
lowing work (Mars et al. 2023a), the GU-Net was applied to the
RI imaging problem. The variations of the 𝑢𝑣-coverage are handled
by training the neural network on a broad distribution of simulated
𝑢𝑣-coverages and subsequently fine-tuning the network for a specific
sampling distribution.

Aghabiglou et al. (2023) recently proposed a series of DNNs that

combines notions of PnP algorithms and unrolled optimisation meth-
ods (Adler & Öktem 2018; Monga et al. 2019). Each DNN is trained
to transform a back-projected residual into an image residual, thus
ideally improving the reconstruction of the previous iteration. The
results show a significant speed-up with respect to AIRI or SARA-
based methods while maintaining a similar reconstruction quality.
Other recent approaches based on deep neural networks include:
Wang et al. (2023) who proposed a denoising diffusion probabilistic
model conditioned on the visibilities and the dirty reconstruction; and
Schmidt et al. (2022) who proposed a convolutional neural network
based on residual blocks that intend to inpaint the measurements, or
recover the entire 𝑢𝑣 plane from an incomplete coverage.

2.5 Bayesian framework

Bayesian inference provides a principled statistical framework to
solve the inverse problem in Equation 3 with statistical guarantees.
This framework builds upon Bayes’ famous theorem,

𝑝(𝒙 |𝒚)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
𝑝(𝒚 |𝒙)

Prior︷︸︸︷
𝑝(𝒙)∫

R𝑁
𝑝(𝒚 |𝒙)𝑝(𝒙)d𝒙︸                   ︷︷                   ︸

Bayesian evidence

. (7)

Bayes’ theorem relates the posterior distribution to the likelihood
and prior terms that are the main constituents of a Bayesian model.
The likelihood is associated with the data-fidelity term depending on
the observational model and the noise statistics. The prior models
expected properties of the solution 𝒙, for example, smoothness, and
piecewise regularity. This prior knowledge regularises the estimation
problem.

The term in the denominator, commonly known as the Bayesian
evidence, does not depend on 𝒙 as we are marginalising over that
variable, and it describes the likelihood of the observed data based
on the modelling assumptions. The Bayesian evidence is crucial for
making Bayesian model comparison (Robert 2007), which provides
us with a consistent way to compare models. Such high dimensional
integrals can be effectively estimated by, for example, nested sam-
pling techniques (Skilling 2006; Ashton et al. 2022), or the recently
introduced learned harmonic mean estimator (McEwen et al. 2021;
Spurio Mancini et al. 2022; Polanska et al. 2023). Recent devel-
opments have focused on nested sampling to compute the model
evidence in high-dimensional imaging problems with sparsity-based
handcrafted priors (Cai et al. 2022) and deep learning-based priors
(McEwen et al. 2023). Carrying out model selection is out of the
scope of this work.

Under the Bayesian framework, we have the posterior distribution
𝑝(𝒙 |𝒚) which assigns a probability to each possible solution 𝒙 given
some observations 𝒚 and a model M consisting of the likelihood and
prior terms. In imaging settings, explaining the information contained
in the posterior distribution is not trivial due to its high-dimensional
nature. The posterior distribution is generally characterised by sam-
ples computed by MCMC sampling. Efficiently sampling from high-
dimensional posterior distributions is a current research topic, see
e.g. Klatzer et al. (2023). Once 𝑝(𝒙 |𝒚) is defined, we can say that the
reconstruction method will be a point estimator of the posterior that
will provide us with �̂�. There are several choices for point estimators
(Robert 2007; Arridge et al. 2019), each with advantages and draw-
backs. Some examples are a sample from the posterior, �̂� ∼ 𝑝(𝒙 |𝒚),
the maximum-a-posteriori estimator, �̂� = argmax𝒙 𝑝(𝒙 |𝒚), or the
posterior mean, �̂� = E[𝒙 |𝒚].
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The posterior also provides us with consistent ways of quantifying
the uncertainty of the chosen point estimate or reconstruction (Robert
2007). For example, one way to represent uncertainty is to compute
the posterior standard deviation. The pixels with a higher standard
deviation are less constrained by the data and the prior allowing for
more significant fluctuations.

One of the most significant drawbacks of Bayesian imaging meth-
ods is that they are known to be computationally expensive, even if
there is a continuous effort targetting the scalability of these methods
(Pereyra 2016; Durmus et al. 2018; Pereyra et al. 2020; Pereyra et al.
2022; Klatzer et al. 2023).

2.5.1 Maximum-a-posteriori estimation

The MAP estimator is particularly interesting in high-dimensional
problems like RI imaging as its formulation allows us to bypass
the need for sampling from the posterior. Consequently, its com-
putational footprint is significantly reduced. The likelihood and
prior terms can be rewritten as 𝑝(𝒚 |𝒙) = exp[− 𝑓 (𝒙, 𝒚)] and
𝑝(𝒙) = exp[−𝑔(𝒙)], respectively. The functions 𝑓 and 𝑔 are the
likelihood and prior potentials. Using Bayes’ theorem in Equation 7,
we can rewrite the MAP estimation as follows

�̂�MAP = argmax
𝒙∈R𝑁

𝑝(𝒙 |𝒚) = argmax
𝒙∈R𝑁

𝑝(𝒚 |𝒙)𝑝(𝒙) . (8)

The previous optimisation problem can be reformulated using the
monotonicity of the logarithm as follows

�̂�MAP = argmin
𝒙∈R𝑁

− log 𝑝(𝒚 |𝒙) − log 𝑝(𝒙)

= argmin
𝒙∈R𝑁

𝑓 (𝒙, 𝒚) + 𝑔(𝒙) . (9)

One advantage of the MAP estimator is that Equation 9 can be
tackled efficiently with optimisation algorithms. We refer the reader
to Pereyra (2019) for a deeper analysis of MAP estimation.

Coming back to the RI imaging inverse problem from Equation 3,
we can define a (white) Gaussian likelihood,

𝑝(𝒚 |𝒙) ∝ exp
[
− 1

2𝜎2 ∥𝒚 −Φ𝒙∥2
2

]
(10)

and a sparsity-inducing Laplace-type prior defined as

𝑝(𝒙) ∝ exp
[
−_

Ψ†𝒙


1

]
. (11)

Upon substitution of Equations 10 and 11 into Equation 9, the MAP
optimisation problem coincides with the one in Equation 6. There-
fore, the MAP reconstruction, �̂�MAP, matches �̂� from Equation 6.
Hence, sparsity-based approaches are MAP estimations with a prior
based on the sparsity-promoting ℓ1 norm in a given dictionary, e.g.,
wavelets.

2.5.2 Uncertainty quantification: more than a point estimate

Computing a good reconstruction for an inverse problem in the form
of Equation 3 can itself be challenging. Moreover, the reconstruc-
tion is often insufficient for many scientific applications that require
further quantification of the result. This demand opens the door to
uncertainty quantification, which provides more than a point esti-
mate. The Bayesian framework provides us with formidable tools to
do uncertainty quantification. For example, if we choose the MAP
estimator as our reconstruction following the model in Section 2.5.1,
we obtain the same reconstruction as in Section 2.2, which is the
solution of Equation 6. However, with the Bayesian framework, we

can sample from the posterior and estimate the posterior standard de-
viation, perform a Bayesian hypothesis test of some image structure
(Cai et al. 2018a; Price et al. 2021b), or compute other pixel-wise un-
certainty measurements like local credible intervals (LCI, Cai et al.
2018a; Price et al. 2019).

2.5.3 Bayesian inference via MCMC sampling

Recent developments (Durmus et al. 2022) have considerably re-
duced the computational complexity of sampling high-dimensional
posterior distributions in imaging inverse problems. Proximal
MCMC sampling algorithms (Pereyra 2016; Durmus et al. 2018)
extend the class of posterior distributions that can be studied by al-
lowing the use of non-smooth terms. Sparse regularisers have been
widely used in RI imaging (Carrillo et al. 2012, 2014; Pratley et al.
2017; Cai et al. 2018a), and are usually enforced through a non-
smooth ℓ1 term.

Let us note 𝜋 the target probability distribution that we are in-
terested in sampling from, which in our case will be the posterior
𝑝(𝒙 |𝒚). We consider a Langevin diffusion process on R𝑁 such that
its stationary distribution is 𝜋. Assuming that 𝜋 ∈ C1 with Lipschitz
gradients, we write the Langevin diffusion as the following stochastic
process

𝑑𝐿 (𝑡) = 1
2
∇ log 𝜋[𝐿 (𝑡)]𝑑𝑡 + 𝑑𝑊 (𝑡), 𝐿(0) = 𝑙0 , (12)

where𝑊 is a 𝑁-dimensional Brownian motion. A usual discrete-time
approximation of the Langevin diffusion consists of a forward Euler
approximation with a step size 𝛿, known as the Euler-Maruyama
approximation (Kloeden & Platen 2011). The resulting algorithm is
known as the unadjusted Langevin algorithm (ULA),

𝒍 (𝑚+1) = 𝒍 (𝑚) + 𝛿∇ log 𝜋[𝒍 (𝑚) ] +
√

2𝛿𝒘 (𝑚+1) , (13)

where 𝒘 (𝑚+1) ∼ N(0, I𝑁 ) is the discrete counterpart of 𝑊 (𝑡). The
ULA-based Markov chain converges to 𝜋 with an asymptotic bias due
to discretisation. The bias can be accounted for with a subsequent
Metropolis-Hasting (MH) accept-reject step. Adding the MH step
corrects the bias but increases the algorithm’s computational com-
plexity. The ULA algorithm with the subsequent MH step is known
as the Metropolis-adjusted Langevin algorithm (MALA).

The ULA algorithm requires the target density 𝜋 to be continuously
differentiable with Lipschitz gradients. Let us now consider 𝜋(𝒙) ∝
exp[− 𝑓 (𝒙) − 𝑔(𝒙)], where 𝑓 ∈ C1 with Lipschitz gradient and 𝑔

is non-smooth but is a lower semicontinuous convex function that
admits a proximal operator (Parikh & Boyd 2014). Proximal MCMC
algorithms (Pereyra 2016) relax this assumption by approximating
𝑔, a non-smooth term in 𝜋, by its Moreau-Yosida envelope 𝑔𝛾 . The
Moreau-Yosida approximation satisfies

∇𝑔𝛾 (𝒙) = 1
𝛾

(
𝒙 − prox𝑔𝛾 (𝒙)

)
, (14)

prox𝑔𝛾 (𝒙) := argmin
𝒖∈R𝑁

{
𝑔(𝒖) + 1

2𝛾
∥𝒖 − 𝒙∥2

2

}
, (15)

where 𝛾 is the Moreau-Yosida approximation parameter and the prox-
imal operator may or may not have a closed-form expression. Con-
sequently, the non-smooth target density 𝜋 is approximated by the
smooth 𝜋𝛾 , which replaces the 𝑔 term with its Moreau-Yosida ap-
proximation 𝑔𝛾 . The Markov chain targeting 𝜋𝛾 writes

𝒍 (𝑚+1) =
(
1 − 𝛿

𝛾

)
𝒍 (𝑚) + 𝛿

𝛾
prox𝑔𝛾

(
𝒍 (𝑚)

)
(16)

− 𝛿∇ 𝑓

(
𝒍 (𝑚)

)
+
√

2𝛿𝒘 (𝑚+1) ,
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and it is known as Moreau-Yosida regularised ULA (MYULA). If we
add an MH step targetting the non-differentiable distribution 𝜋, the
MCMC algorithm is known as Proximal MALA (Px-MALA). The
proximal MCMC algorithms previously mentioned can be further
accelerated by replacing the Euler-Maruyama approximation with
the more involved Runge-Kutta-Chebyshev approximation (Abdulle
et al. 2018), giving rise to the SK-ROCK (Pereyra et al. 2020) algo-
rithm.

Cai et al. (2018a) exploited the MYULA and Px-MALA algo-
rithms to sample from the posterior in the RI imaging problem. The
model is based on a Gaussian likelihood as in Equation 10 and a spar-
sity promoting prior akin to Equation 11. However, the framework
can be used with more complex noise models (Melidonis et al. 2023),
e.g. Poisson noise. In Cai et al. (2018a), the RI image reconstruction
is based on the minimum mean squared error (MMSE) estimator, or
posterior mean, while in Cai et al. (2018b), the MAP is considered.

3 SCALABLE BAYESIAN DATA-DRIVEN IMAGING WITH
UNCERTAINTY QUANTIFICATION

QuantifAI1, a scalable Bayesian data-driven method with uncer-
tainty quantification is motivated by three principles:

1. Scalability: The RI imaging inverse problem demands scala-
bility for a method to be useful in real astronomical data scenarios
such as SKA. The most time-consuming operation is evaluating the
measurement operator Φ in the likelihood function. It is, therefore,
essential to minimise the number of likelihood evaluations. For these
reasons, we limit ourselves to the MAP estimator for our recon-
struction corresponding to the solution of a convex optimization
problem which converges quickly. We need to avoid sampling-based
approaches as they are prohibitively expensive in terms of computa-
tions.

2. High-quality reconstructions: To improve the quality of our re-
construction, we consider data-driven or learned priors that can better
encode the expected image structures. In Section 2.4, we have already
seen that data-driven approaches can better represent complex imag-
ing priors and provide reconstructions superior to handcrafted priors,
such as sparsity-promoting priors based on wavelet dictionaries.

3. Uncertainty quantification: There are many ways to quantify
uncertainty based on sampling the posterior distribution. However,
as we have seen, using sampling-based methods is prohibitively ex-
pensive, and one of our key criteria is computational scalability.
Therefore, we need to restrict ourselves to log-concave posteriors,
which is equivalent to saying that the addition of our potentials 𝑓 + 𝑔
has to be convex, and to explicit potentials. As we will later de-
scribe in more detail in Section 4, the first restriction enables the
use of efficient methods relying on the concentration of probability
for high-dimensional log-concave distribution (Pereyra 2017). Con-
sequently, we can use approximate posterior information bypassing
sampling methods. These methods are orders of magnitude faster
resulting in a scalable Bayesian UQ method. In a nutshell, we re-
quire the posterior potential to be convex and explicit for scalable
UQ. The likelihood is typically convex for RI imaging problems so
we will enforce the prior potential 𝑔 to be convex and explicit. The
requirement of explicit potentials will be explained in Section 4.

We continue by introducing the data-driven convex regularisers
and the optimisation algorithm used to compute the MAP estimation
for the proposed method.

1 Code available at github.com/astro-informatics/QuantifAI

3.1 Learned convex regularisers

As stated before, we need an expressive regulariser that is convex and
has an explicit potential. More modern regularisers used in RI imag-
ing reconstruction methods satisfy neither of the two constraints.
This last constraint, i.e., with an explicit potential required by the
UQ approach, excludes a range of denoisers whose potentials are de-
fined implicitly. PnP approaches (Terris et al. 2022) only require the
denoising of the image without explicitly computing the regularisa-
tion potential. For example, a typical iteration from a PnP algorithm
writes

𝒙𝑘+1 = D(𝒙𝑘 − 𝛾∇ 𝑓 (𝒙𝑘)) , (∀𝑘 ∈ N) , (17)

where D is the denoiser, 𝑓 is the data-fidelity term, 𝛾 is the step size,
and 𝑘 is the iteration number. The algorithm’s convergence can be
assured if D and the stepsize satisfies some conditions (Pesquet et al.
2021; Ryu et al. 2019). Even if the denoiser D is convex, we cannot
use it for our approach as we must evaluate the potential.

Mukherjee et al. (2020) proposed a learned convex regulariser
parametrised by the architecture of a deep input-convex neural net-
work (ICNN, Amos et al. 2016), which is convex by construction.
The training of the regulariser is done with an adversarial framework
introduced by Lunz et al. (2018).

Very recently, a learnable convex-ridge regulariser neural network
(CRR-NN2, Goujon et al. 2023b) has been proposed, which comes
with the required properties of being convex and having an explicit
potential. In addition, the model focuses on being reliable and in-
terpretable while still being expressive enough to provide excellent
reconstruction quality. The CRR-NN regulariser, 𝑅𝜽 , has the form

𝑅𝜽 : R𝑁 ↦→ R, 𝑅𝜽 (𝒙) =
𝑁C∑︁
𝑖=1

∑︁
𝑘

𝜓𝑖 ((𝒉𝑖 ∗ 𝒙) [𝑘]) , (18)

where 𝒉𝑛 are learnable 2D convolution kernels, (𝒉𝑖 ∗ 𝒙) [𝑘] de-
notes the 𝑘-th pixel of the resulting convolution, 𝑁C is the number
of channels or kernels, 𝜓𝑖 : R ↦→ R are learnable non-linear con-
vex profile functions with a Lipschitz continuous derivative, i.e.,
𝜓𝑖 ∈ 𝐶1,1 (R), and 𝜽 in 𝑅𝜽 represents all learnable parameters.
The convexity constraint on the learnable activation functions, 𝜓𝑖 ,
is enforced by making the pointwise 𝜎𝑖 : R → R monotonically in-
creasing, with 𝜓′

𝑖
= 𝜎𝑖 , where 𝜎𝑖 ∈ 𝐶

0,1
↑ (R), and 𝐶

0,1
↑ (R) is the set

of scalar Lipschitz continuous and increasing functions on R. The 𝜎𝑖
functions are chosen as learnable linear splines. We refer the reader
to Goujon et al. (2023b); Bohra et al. (2020) for more information
on learnable splines.

In the spirit of PnP approaches, the CRR-NN training is based on
the denoising problem that reads

𝒙∗ = argmin
𝒙∈R𝑁

1
2
∥𝒙 − 𝒚∥2

2 + _𝑅𝜽 (𝒙) , (19)

where 𝒚 is a noisy version of 𝒙, and _ is a parameter controlling the
regularisation strength. The denoising problem is addressed through
the fixed point of the problem, which given the convexity assump-
tions, is unique. A gradient step of Equation 19 reads

𝑇𝑅𝜽 ,_,𝛼 (𝒙) = 𝒙 − 𝛼((𝒙 − 𝒚) + _∇𝑅𝜽 (𝒙)) , (20)

where𝛼 is the stepsize. Convergence can be guaranteed if the stepsize
satisfies 𝛼 ∈ (0, 2/(1+_ Lip(∇𝑅𝜽 ))), where Lip(·) denotes the Lips-
chitz constant. By composing 𝑡 gradient descent updates of Equation

2 https://github.com/axgoujon/convex_ridge_regularizers
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20, i.e., a 𝑡-fold composition, we obtain a multi-gradient step de-
noiser that we denote 𝑇 𝑡

𝑅𝜽 ,_,𝛼
following the notation of Goujon et al.

(2023b).
The denosing problem in Equation 19 can be formulated as a fix

point problem for the 𝑡-step denoiser 𝑇 𝑡
𝑅𝜽 ,_,𝛼

as follows,

𝑇 𝑡
𝑅𝜽 ,_,𝛼

(𝒚) ≈ 𝒙 . (21)

We build the CRR-NN training by penalising the residual of the fix
point problem in Equation 21 with a loss function L, for a training set
of pairs of noiseless and noisy images {𝒙 (𝑚) , 𝒚 (𝑚) }𝑀

𝑚=1, and reads

𝜽∗𝑡 , _
∗
𝑡 ∈ argmin

𝜽,_

𝑀∑︁
𝑚=1

L
(
𝑇 𝑡
𝑅𝜽 ,_,𝛼

(𝒚 (𝑚) ), 𝒙 (𝑚)
)
. (22)

After having trained the denoiser, we define our prior potential as

𝑔(𝒙) = _

`
𝑅𝜽 (`𝒙) , (23)

where we have dropped the 𝜽∗𝑡 , _
∗
𝑡 notation for 𝜽 , _ and added a

scaling parameter, `, to boost performance following Goujon et al.
(2023b). For the optimisation algorithm, we need the Lipschitz con-
stant of the gradient of the potential in Equation 23, which can be
expressed as

Lip(∇𝑔) = _ ` Lip(∇𝑅𝜽 ) ≤ _ ` ∥W𝑇Σ∞W∥ , (24)

which is calculated in Goujon et al. (2023b, Prop. IV.1), and Σ∞ =

diag(∥𝜎′
1∥∞, . . . , ∥𝜎′

𝑁𝐶
∥∞), and W = [𝒘1 · · ·𝒘𝑁𝐶

]𝑇 where 𝒘𝑖

corresponds to the filter 𝒉𝑖 : 𝒉𝑖 ∗ 𝒙 = 𝒘𝑇
𝑖

vec(𝒙) and vec(·) is the
operator that flattens a matrix into a one-dimensional array.

3.2 Computing our reconstruction: the MAP

In our case, computing the MAP reduces to solving a convex optimi-
sation problem. Following Equation 9, the optimisation problem we
address is the following one,

�̂�MAP = argmin
𝒙∈R𝑁

1
2𝜎2 ∥𝒚 −Φ𝒙∥2

2 + _

`
𝑅𝜽 (`𝒙) + ]R𝑁 (𝒙) , (25)

where in addition we include ]R𝑁 , an indicator function enforcing the
reconstructed image to be real. The proximal operator of the indicator
function to a convex set is known and it amounts to projecting the
vector to its real component, which is written as Re(·). We have
assumed a (white) Gaussian likelihood and the prior term is based on
a previously trained CRR-NN. The CRR-NN is smooth with Lipschitz
continuous gradients. However, the non-smoothness of the reality
enforcing constraint forces us to rely on proximal algorithms (Parikh
& Boyd 2014) instead of an accelerated gradient descent method
(Nesterov 2018). In this case, we use the FISTA algorithm (Beck &
Teboulle 2009).

For the optimisation, we need the gradient of the likelihood and
prior terms

∇𝒙 𝑓 (𝒙, 𝒚) =
1
𝜎2 (Φ

† (Φ𝒙 − 𝒚)) , (26)

∇𝑔(𝒙) = _∇𝑅𝜽 (`𝒙) , (27)

where, in our case, (·)† is the complex conjugate transpose.
To ensure the algorithm’s convergence we use the stepsize 𝜏 =

1/𝐿, where 𝐿 = Lip(∇𝒙 𝑓 (𝒙, 𝒚) + ∇𝑔(𝒙)). We can estimate a simple
bound for the Lipschitz constant as follows

𝐿 ≤ Lip(∇𝒙 𝑓 (𝒙, 𝒚)) + Lip(∇𝑔(𝒙)) = 𝐿likelihood + 𝐿prior-CRR-NN ,

≤ ∥Φ†Φ∥
𝜎2 + _ ` ∥W𝑇Σ∞W∥ , (28)

where we have exploited the result from Equation 24, and ∥Φ†Φ∥
denotes the spectral norm, which in the case of a linear operator
coincides with its maximum singular value. In the simplified problem
we are considering in Section 2.1, we have that ∥Φ†Φ∥ = 1. If a more
realistic linear operator should be considered, the maximum singular
value could be computed iteratively via the power method (Golub &
van Loan 2013).

We initialise the optimisation with the dirty image, 𝒙 (0) =

Re(Φ†𝒚), which is the backprojection of our measurements. The
optimisation procedure is summarised in Algorithm 1. We optimise
for a fixed number of iterations 𝑁max, or until a tolerance criterion of
b is reached. The stepsize is computed using the bound from Equation
28.

Algorithm 1: FISTA (Beck & Teboulle 2009) tackling (25)

1 Input: 𝑅𝜽 , Φ, 𝜎, `, _, b, 𝒛 (1) = 𝒙 (0) = Re(Φ†𝒚), 𝜏 = 1/𝐿.
2 Output: �̂�MAP

3 for 𝑛 = 1, . . . , 𝑁max do
4 𝒙 (𝑛) = 𝒛 (𝑛)−𝜏

(
1
𝜎2 Re(Φ† (Φ𝒛 (𝑛) − 𝒚)) + _∇𝑅𝜽 (`𝒛 (𝑛) )

)
5 𝑎 (𝑛+1) =

1
2 (1 +

√︃
4𝑎2

(𝑛) + 1)

6 𝒛 (𝑛+1) = 𝒙 (𝑛) +
𝑎(𝑛)−1
𝑎(𝑛+1)

(𝒙 (𝑛) − 𝒙 (𝑛−1) )

7 if ∥𝒙(𝑛)−𝒙(𝑛−1) ∥
∥𝒙(𝑛−1) ∥ < b then

8 break
9 end

10 end
11 set �̂�MAP = 𝒙 (𝑛)

4 SCALABLE UNCERTAINTY QUANTIFICATION

Enforcing the posterior’s convexity and explicit potential opens the
door to scalable UQ methodology that was unreachable otherwise.
The restriction to log-concave posteriors is the price we pay to gain
great scalability. Our approach is based on the work from Pereyra
(2017), which exploits concentration phenomena occurring in high-
dimensional log-concave posteriors. The Bayesian high-posterior-
density region can be approximated in log-concave models as the
posterior probability mass tends to concentrate in particular regions
on the parameter space. The approximation requires the MAP esti-
mation, �̂�MAP, which we have already computed as it is the chosen
point estimate for our reconstruction. This result allows us to estimate
information from the posterior probability density function without
MCMC sampling. In this Section, we introduce the main result we
exploit for UQ. We then describe the proposed scalable UQ meth-
ods and how to validate our results with Langevin-based MCMC
sampling algorithms.

4.1 Highest Posterior Density Regions

Let us define a posterior credible region with a credible level of
100(1 − 𝛼)% as a set 𝐶𝛼 ∈ R𝑁 satisfying

𝑝(𝒙 ∈ 𝐶𝛼 |𝒚) =
∫
𝒙∈R𝑁

𝑝(𝒙 |𝒚)1𝐶𝛼
(𝒙)d𝒙 = 1 − 𝛼, (29)

with 1𝐶𝛼
being being unity if 𝒙 ∈ 𝐶𝛼 and zero otherwise. There are

many regions satisfying the previous equation. We will focus on the
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highest posterior density region (HPD), which is defined as

𝐶𝛼 :=
{
𝒙 ∈ R𝑁 : 𝑓 (𝒙) + 𝑔(𝒙) ≤ 𝛾𝛼

}
, (30)

where 𝑓 and 𝑔 are the potentials of our likelihood and prior terms,
and 𝛾𝛼 is a constant that defines a level-set of the log-posterior such
that Equation 29 holds. The HPD region has the property of having
minimum volume and being decision-theoretically optimal (Robert
2007).

Our posterior 𝑝(𝒙 |𝒚) = exp[− 𝑓 (𝒙) − 𝑔(𝒙)]/𝑍 is log-concave on
R𝑁 , where 𝑍 is the Bayesian evidence. Then, following Pereyra
(2017, Theorem 3.1), for any 𝛼 ∈ (4 exp[(−𝑁/3)], 1), the HPD
region 𝐶𝛼 from Equation 30 is contained in

�̂�𝛼 =

{
𝒙 ∈ R𝑁 : 𝑓 (𝒙) + 𝑔(𝒙) ≤ �̂�𝛼

}
, (31)

where

�̂�𝛼 = 𝑓 (�̂�MAP) + 𝑔(�̂�MAP) +
√
𝑁𝜏𝛼 + 𝑁, (32)

with a positive constant 𝜏𝛼 =
√︁

16 log(3/𝛼) independent of 𝑝(𝒙 |𝒚).
Theorem 3.2 in Pereyra (2017) gives the error analysis of the

approximation, and we see that 0 ≤ �̂�𝛼−𝛾𝛼 ≤ 𝜏𝛼
√
𝑁+𝑁 . Therefore,

the error upper bound grows linearly with the dimension 𝑁 , making
�̂�𝛼 a stable approximation of 𝐶𝛼. The error lower bound along
with the convexity of 𝑓 + 𝑔 guarantees the inclusion 𝐶 ⊆ �̂� and
consequently the resulting approximation is a conservative one where
the errors are overestimated.

After showing the main result allowing us to do UQ bypassing
posterior sampling methods, it is clear from where the constraints of
the prior come. The convexity is required to guarantee a log-concave
posterior, as the likelihood potential is convex. The prior potential 𝑔
needs to be explicit to compute the approximate HPD region using
Equation 32.

4.2 MAP-based UQ methods

We now explore different scalable UQ schemes based on the fast
approximate implicit representation of the HPD region. For all the
methods presented, we assume that we have already computed the
�̂�MAP estimation and the approximated HPD region threshold, �̂�𝛼.

4.2.1 Bayesian hypothesis testing of structure

A useful UQ tool is to perform a knock-out hypothesis test to asses if
a surrogate image still belongs to the HPD region (Cai et al. 2018a,b;
Price et al. 2021b). First, the surrogate image 𝒙sgt is constructed by
modifying the reconstruction, �̂�MAP. Then, it suffices to check if

𝑓 (𝒙sgt) + 𝑔(𝒙sgt) ≤ �̂�𝛼 . (33)

If the inequality is satisfied, we cannot draw conclusions on the test
we made, as 𝒙sgt still belongs to the HPD region. However, if the
inequality does not hold, we can conclude that 𝒙sgt is out from the
HDP region with a 100(1 − 𝛼)% confidence level.

This test can answer a variety of questions about our reconstructed
image. One example is to interrogate some structure in the image to
see if it is a reconstruction artefact or is physically motivated. For
this question, the surrogate image would be composed of an image
with the region of interest artificially inpainted with surrounding
information. We need to take the inpainted image as our surrogate
and evaluate Equation 33 to see if the test is conclusive.

The image inpainting algorithm is built similarly as in Cai et al.
(2018b) but adapted to the CRR-NN-based prior. We start by select-
ing a region of interestΩD, which is a subset of (typically contiguous)

pixels from the image, where ΩD ⊆ Ω, where Ω denotes the set of all
the image pixels. The region ΩD will be inpainted with background
information. We then inpaint this region iteratively minimising 𝑅𝜽
based on the following scheme

𝒙sgt, (𝑚+1) = �̂�MAP1Ω−ΩD (34)

+
(
𝒙sgt, (𝑚) − 𝛼_∇𝑅𝜽

(
` 𝒙sgt, (𝑚)

))
1ΩD ,

where 1 are indicator functions, and 1Ω−ΩD is a shorthand for 1Ω −
1ΩD . We carry out a gradient step with the CRR-NN on the surrogate
image and only update the region of interest. The hyperparameters,
𝛼, _, and ` are set as in Algorithm 1.

Alternatively, Repetti et al. (2019) presented a more sophisticated
method to perform hypothesis testing of structure, which also ex-
ploits the approximations in Equations 31-32. The method is dubbed
Bayesian uncertainty quantification by optimisation (BUQO), and to
answer the hypothesis test, it aims to study the intersection of two
sets. The first one is defined in Equation 31 that corresponds to the
MAP estimate. The second one describes the set of feasible inpainted
images given a region of interest and a set of constraints of desired
properties. If the set intersection is empty, the structure of interest is
considered present in the image with confidence 𝛼 from Equation 31.
Tang & Repetti (2023) proposed an extension of the BUQO method
to inpaint with data-driven models. However, these methods involve
solving an expensive optimisation problem that does not scale with
the high-dimensional settings we are considering in this work.

Another example is to interrogate the reconstruction to see if the
fine structure of the image is physical or likely an artefact. To con-
struct the surrogate image we convolve the region of interest, ΩD,
with a Gaussian smoothing kernel 𝐺 (0, Σ),

𝒙sgt = �̂�MAP1Ω−ΩD + (�̂�MAP ∗ 𝐺 (0, Σ)) 1ΩD , (35)

where ∗ denotes the 2D convolution operation and test Equation 33.

4.2.2 Local credible intervals

Local credible intervals (LCIs) provide a tool to quantify spatial un-
certainty per pixel at different resolutions. The LCIs are interpreted
as Bayesian error bars for each pixel or superpixel, where with su-
perpixel, we refer to a group of contiguous pixels. Cai et al. (2018a)
computed LCIs using MCMC methods and then extended it in Cai
et al. (2018b) to compute them based on the approximated HPD re-
gion based on the MAP. Price et al. (2019) also exploited MAP-based
LCIs in another imaging inverse problem, mass-mapping, for weak
gravitational lensing convergence reconstruction.

Let us write Ω = {Ω𝑖}𝑀𝑖=1 the set of superpixels that partition the
domain of 𝒙. This partition is such that Ω𝑖 ∩ Ω 𝑗 = ∅,∀𝑖 ≠ 𝑗 and
Ω = ∪𝑖Ω𝑖 . We denote the indicator of the superpixel Ω𝑖 as 𝜻Ω𝑖

, that
is one if the pixel belongs to the superpixel Ω𝑖 and zero otherwise.
The use of smaller or bigger superpixel sizes, i.e., ∥𝜻Ω𝑖

∥0, allows
us to visualise the LCIs at different scales. The calculation of the
LCIs is based on computing an upper and lower bound for each
superpixel. Each bound is defined by the constant value we need to
add or subtract to the superpixel region so that the modified image
exits the approximate HPD credible region �̂�𝛼. In other words, we
compute the values that saturate the HPD region for each superpixel.

We can isolate the superpixel region by defining the following
surrogate image

𝒙𝑖, b = �̂�MAP (𝑰 − 𝜻Ω𝑖
) + (b + �̄�MAP,Ω𝑖

)𝜻Ω𝑖
, (36)

where �̄�MAP,Ω𝑖
corresponds to the mean value of the pixels in the

superpixelΩ𝑖 , and b ∈ R. We vary the superpixel value from its mean
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by a uniform value b. The bounds for a superpixel Ω𝑖 are computed
as

b+,Ω𝑖
=max

b

{
b | 𝑓 (𝒙𝑖, b , 𝒚) + 𝑔(𝒙𝑖, b ) ≤ �̂�𝛼, b ∈ [0, +∞)

}
, (37)

b−,Ω𝑖
=min

b

{
b | 𝑓 (𝒙𝑖, b , 𝒚) + 𝑔(𝒙𝑖, b ) ≤ �̂�𝛼, b ∈ (−∞, 0]

}
, (38)

where we use the threshold �̂�𝛼 defined in Equation 32. The calcula-
tion of each bound can be recast as a problem of finding the zero of a
function. The class of root-finding algorithms is well adapted for this
root-finding problem, and, in practice, we use the bisection method
(Burden & Faires 1989). Price et al. (2021a) proposed a faster way to
compute the superpixel bounds by exploiting linearity that we could
use to further accelerate the computation of b+,Ω𝑖

and b−,Ω𝑖
.

Once the bounds have been computed, we can collate the results
for all superpixels and use the length of the LCIs to visualise the
reconstruction uncertainty. The length of the LCI for superpixelΩ𝑖 is
defined as 𝑙𝑖 = b+,Ω𝑖

−b−,Ω𝑖
, which we can visualise as an uncertainty

image

𝝃 =
∑︁
𝑖

(
b+,Ω𝑖

− b−,Ω𝑖

)
𝜻Ω𝑖

. (39)

We will later validate the computed LCIs using the posterior sam-
ples obtained from computing the posterior standard deviation at
different superpixel sizes. The method requires turning each poste-
rior sample into an image with 𝑀 superpixels. We set the value of
the superpixel to the mean of the values of belonging pixels.

4.2.3 Fast pixel uncertainty quantification at different scales

The MAP-based LCIs described in the previous section are orders
of magnitude faster than their MCMC-based counterparts (Cai et al.
2018a,b). Nevertheless, to compute the LCIs, we still need to evaluate
the likelihood potential, 𝑓 , several times for each superpixel. As
mentioned, evaluating the likelihood potential is by far the most
time-consuming operation. The fact that we need to evaluate 𝑓 several
times for each subpixel might make the LCIs impractical for SKA-
scale problems.

To overcome this issue, we propose a new approach relying on
wavelet decomposition of the MAP reconstruction that reads

�̂�MAP = 𝚿 �̂�MAP =

𝐿∑︁
𝑖=1

𝚿𝑖 �̂�MAP,𝑖 , (40)

with a wavelet dictionary𝚿. We define the hard thresholding operator
for 𝒂 ∈ C𝐿 with a threshold of bth,

𝑆hard, bth (𝒂) =
[
𝑆hard, bth (𝑎1), . . . , 𝑆hard, bth (𝑎𝐿)

]𝑇
, (41)

as the point-wise application of the following hard-thresholding func-
tion

𝑆hard, bth (𝑎𝑖) =
{

0, if |𝑎𝑖 | ≤ bth,

𝑎𝑖 , otherwise.
(42)

Let b̂th be the thresholded value for which the thresholded image
saturate the HPD region as follows

b̂th = max
bth

{bth | 𝑓 (�̂�MAP, bth , 𝒚) + 𝑔(�̂�MAP, bth ) ≤ �̂�𝛼, (43)

�̂�MAP, bth = 𝚿 𝑆hard, bth ( �̂�MAP), b ∈ [0, +∞)} .

We can compute the threshold bound with a root-finding method,
as was the case for the LCIs. The advantage of this formulation is
that we are solving only one root-finding problem as opposed to

one per superpixel in the LCIs calculation. This change consider-
ably reduces the number of likelihood evaluations and, therefore, the
computational complexity of the UQ method.

By computing the difference between the MAP, �̂�MAP, and the
thresholded surrogate, �̂�MAP, b̂th

, we obtain an estimation of the so-
lution’s uncertainty and this can give us information about possible
errors in the MAP. Furthermore, we can compare the MAP and the
thresholded surrogate image to estimate errors as a function of scale,
thus exposing the different structures of our reconstruction.

Let us consider our wavelet transformation as a multiscale trans-
form of level 𝐽 + 1 (Mallat 2008; Starck et al. 2010). We can rewrite
Equation 40 showcasing the multiscale coefficients as follows

�̂�MAP = 𝚿 �̂�MAP =

𝐽∑︁
𝑙=0

𝚿𝑙 �̂�MAP,𝑙 , (44)

where �̂�MAP,𝑙 are the coefficients corresponding to the 𝑙-th level of
decomposition, and the zeroth level corresponds to the coarse scale.
We can now build thresholded surrogate images at different scales by
replacing the MAP wavelet coefficients at level 𝑙 from Equation 44
with the coefficients of the thresholded surrogate image �̂�MAP, b̂th

.
Let us write the thresholded surrogate image at level 𝑗 as follows

�̂�MAP, b̂th , 𝑗
=

𝐽∑︁
𝑙=0,
𝑙≠ 𝑗

𝚿𝑙 �̂�MAP,𝑙 +𝚿 𝑗 �̂�MAP, b̂th , 𝑗
, (45)

where �̂�MAP, b̂th , 𝑗
corresponds to the wavelet coefficients of the

thesholded surrogate image �̂�MAP, b̂th
at level 𝑗 . The errors at

level 𝑗 can be approximated by the difference between �̂�MAP and
�̂�MAP, b̂th , 𝑗

.
There are two main advantages of this approach to pixel-based UQ

with respect to the LCIs described in Section 4.2.2. The first one is the
reduced computational complexity, as we only need to solve a single
root-finding problem, significantly reducing the number of likelihood
evaluations. The second is that when we saturate the HPD region, we
consider the entire image simultaneously. In the LCI computation,
we only change a small group of pixels until it saturates the HDP
region that corresponds to the entire image. This behaviour can be
problematic as, for example, the LCI error bounds will be larger
if the size of the image grows and the superpixel size is kept the
same, which is an undesirable property. Consequently, the predicted
errors from the new pixel UQ approach are faster to compute and
considerably tighter than the LCIs.

4.3 MCMC sampling and UQ validation

As stated before, MCMC sampling is not yet scalable to the high
dimensions of the RI imaging problems we target. However, sampling
is still helpful in validating the UQ approaches of this paper. If we
sample from the posterior distribution, we can compute the posterior
standard deviation, providing a visual representation of the posterior,
including the learned convex regulariser. Sampling from the posterior
also allows us to compare the MAP estimator with another widely
known estimator, the posterior mean (Arridge et al. 2019), which
coincides with the minimum mean squared error (MMSE) estimator
under some assumptions.

The log-posterior distribution of the QuantifAI model with the
CRR-NN reads

− log 𝑝CRR-NN (𝒙 |𝒚) ∝
1

2𝜎2 ∥𝒚 −Φ𝒙∥2
2 + _

`
𝑅𝜽 (`𝒙) + ]R𝑁 (𝒙) , (46)

with the first two terms belonging to C1 with Lipschitz gradients,
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we do not need to use any approximation, e.g., the MY envelope,
to sample from it. The reality constraint is enforced directly when
evaluating the gradient of the log-likelihood. The Langevin diffusion
sampling algorithms reviewed in Section 2.5.3 require the gradient of
the log-posterior distribution, which have been computed in Equation
26 and Equation 27. In practice, we will use the SK-ROCK algorithm
(Pereyra et al. 2020) as it is faster than the ULA algorithm. We omit
the subsequent MH step to accelerate the calculations motivated by
the consistent results from Cai et al. (2018a).

The log-posterior distribution of the analysis formulation of the
model from Cai et al. (2018a) with a wavelet-based sparsity enforcing
prior reads

− log 𝑝WAV (𝒙 |𝒚) ∝
1

2𝜎2 ∥𝒚 −Φ𝒙∥2
2 + _

Ψ†𝒙


1 + ]R𝑁 (𝒙) , (47)

which includes the non-smooth prior term with the ℓ1 norm, and the
reality constraint which we again apply to the gradient of the log-
likelihood. We resort to the MY envelope 𝛾-approximation of the
sparsity-inducing prior term as shown in Equation 14. The proximal
operator of the prior term has a closed-form solution that reads

𝑆soft, 𝛽th (𝒂) =
[
𝑆soft, 𝛽th (𝑎1), . . . , 𝑆soft, 𝛽th (𝑎𝐿)

]𝑇
, (48)

where 𝒂 = Ψ†𝒙 and we have applied element-wise the soft-
thresholding function

𝑆soft, 𝛽th (𝑎𝑖) =
{

0, if |𝑎𝑖 | ≤ 𝛽th,
𝑎𝑖
|𝑎𝑖 | ( |𝑎𝑖 | − 𝛽th) , otherwise.

(49)

The threshold 𝛽th used in practice is _𝛾, the product of the regulari-
sation strength and the parameter of the MY approximation. See Cai
et al. (2018a) for more details on sampling the model with a wavelet-
based regularisation. In practice, we again rely on the SK-ROCK
algorithm for sampling and avoid using an MH step for the reasons
mentioned above.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the QuantifAI model against the
wavelet-based model presented in Cai et al. (2018a,b) as it is one
of the few RI imaging methods providing UQ capabilities. We use a
simulated setup with real reconstructed RI images considered as the
ground truth. We focus on the UQ capabilities of the methods, while
also considering reconstruction performance.

5.1 Dataset

The base images used in our experiment are the ones from Cai et al.
(2018a): (i) the HI region of the M31 galaxy in Figure 1 (a), (ii) the
W28 supernova remnant in Figure 2 (a), (iii) the 3C288 radio galaxy
in Figure 3 (a), and (iv) the Cygnus A radio galaxy in Figure 4 (a). All
the images are 256×256 pixels, except for the Cygnus A galaxy, which
is 256× 512. As the ground truth images are reconstructed from real
observations, there are minor original residuals and backgrounds that
are more noticeable in the log scale images, for example, see Figure
3 (b).

The previous images correspond to 𝒙 in our observational model
from Equation 3. The complex Gaussian noise 𝒏 ∈ C𝑀 is com-
posed of independent and identically distributed (i.i.d.) samples.
Each sample is simulated following a complex Gaussian distribution,
𝑛𝑖 ∼ NC (0, 𝜎2), which implies that Re(𝒏), Im(𝒏) ∼ N (0, 𝜎/

√
2)

(Tse & Viswanath 2005). The noise is set such that we get a specific

input signal-to-noise ratio (ISNR) on each image. For all the experi-
ments, we set the ISNR to 30dB, and the noise standard deviation is
computed as follows

𝜎 =
∥𝚽𝒙∥2√

𝑀
10−ISNR/20 . (50)

To mimic the 𝑢𝑣 plane coverage, we reuse the Fourier mask from
Cai et al. (2018a, Fig. 2) and use it to generate the visibilities from
𝒚. The variable sampling density profile was taken from Puy et al.
(2011) and represents a 10% coverage of the Fourier plane.

5.2 Models and experiment settings

5.2.1 RI imaging models

The CRR-NN in the QuantifAI model is a pretrained model with
𝑡 = 5, Gaussian white noise with standard deviation 𝜎 = 5, and
parameters ` = 20 , _ = 5 × 104. The model was trained on a set
of natural images from the BSD500 dataset (Arbeláez et al. 2011)
scaled to the [0, 255] range, using ℓ1 norm as the loss function in
Equation 22 with the Adam optimiser (Kingma & Ba 2017). The
training parameters followed Goujon et al. (2023b, §VI.A).

The wavelet dictionary Ψ used in the wavelet-based model is com-
posed of Daubechies 8 wavelets (Daubechies 1992) with a multires-
olution level 𝐽 = 4 following the setup from Cai et al. (2018a,b). The
regularisation parameter _WAV was set to 1 × 102.

The regularisation strengths of both models, _ and _WAV, were set
to maximise the MAP reconstruction SNR using a grid search. We
observed that QuantifAI’s reconstruction SNR is significantly more
robust with respect to the choice of regularisation strength than the
wavelet-based models.

5.2.2 Optimisation settings

For QuantifAI, we used the optimisation algorithm shown in Algo-
rithm 1. The wavelet-based model also requires a proximal algorithm
due to its non-smooth component and to provide a fair comparison
we used the FISTA algorithm (Beck & Teboulle 2009). In these ex-
periments, we assumed that the noise level 𝜎 is known. If the noise
level is unknown, it may be estimated by standard techniques (Price
et al. 2021b). Both algorithms’ tolerance criterion b was set to 10−5,
and the total number of iterations to 1.5×104. Nevertheless, both op-
timisation algorithms converged before the total number of iterations
was reached.

5.2.3 MCMC sampling settings

We generate 5 × 104 samples from each posterior distribution, with
5 × 104 burn-in iterations and a thinning factor of 10. The burn-in
iterations consist of generating several samples that will be discarded
so that the chain passes its transient period. The thinning factor cor-
responds to the number of samples that need to be generated between
two samples so that they can be considered independently drawn from
the target distribution. The sampling algorithm produced a total of
5.5 × 105 samples for each model. We have set to 10 the number of
stages for the SK-ROCK algorithm (Pereyra et al. 2020), which is
one of its main hyperparameters. The sampling of the posterior prob-
ability distributions is used as a validation, and therefore we set the
sampling parameters focusing on good reconstructions and posterior
samples rather than speed.

The wavelet-based model requires the MY envelope approxima-
tion to guarantee the chain’s convergence, as described in Section
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Table 1. Reconstruction performance of the different point estimates for
the dataset images in terms of SNR with respect to the ground truth. We
compare the MAP and the MMSE reconstruction of the wavelet-based and
the QuantifAI model. We include the dirty reconstruction as a reference.
We observe that the MAP estimation from QuantifAI outperforms the other
reconstructions from the wavelet-based prior and all the MMSE estimations.

Images
Reconstruction SNR [dB]

Dirty Wavelet-based prior QuantifAI
MMSE MAP MMSE MAP

W28 3.39 18.17 23.04 23.38 26.85
M31 5.01 23.78 25.52 24.61 27.48

3C288 7.02 14.31 14.15 23.23 24.10
Cygnus A 4.60 20.52 17.53 25.36 30.25

2.5.3 and Section 4.3. The MY approximation parameter 𝛾 was set
to the inverse of the likelihood gradient’s Lipschitz constant, c.f. the
first term of Equation 28.

The choice of the step sizes is critical to ensure the chains’ conver-
gence to the target distribution in a reasonable amount of time. The
step size is chosen as a function of each posterior gradient’s Lipschitz
constant. The step sizes 𝛿Q and 𝛿W, corresponding to the QuantifAI
and wavelet-based models, respectively, are computed as follows

𝛿Q =
^Q

𝐿likelihood + 𝐿prior-CRR-NN
, 𝛿W =

^W
𝐿likelihood + 𝛾−1 , (51)

where the Lipschitz constant bounds are shown in Equation 28, and
^Q and ^W, are two positive constants smaller than one, here set to
0.98. We have followed the advise from Durmus et al. (2018); Cai
et al. (2018a) to set the sampling parameters.

5.2.4 UQ settings

We set 𝛼 = 0.01 in all the UQ methods, so the confidence level is
99%. We used the bisection algorithm to compute the LCIs and the
fast pixel UQ at different scales, with tolerance 10−4 and maximum
number of iterations 200, for both models. We used the same wavelet
dictionary as in the wavelet-based model for the fast pixel UQ at
different scales.

The inpainting algorithm uses the same stopping criterion as Al-
gorithm 1. In this case, the tolerance is set to 5 × 10−6, and the
total number of iterations to 1.5 × 104. The CRR-NN used for the
inpainting is the same one used in the QuantifAI model.

The Gaussian blurring kernel 𝐺 (0, Σ) from Equation 35 is set
using Σ = 𝜎2

𝐺
𝐼2×2, with 𝜎𝐺 being 3.5 pixels and a truncation radius

of 7 pixels, giving a kernel 𝐺 ∈ R15×15.

5.3 Image reconstruction

We present the RI image reconstructions of the four ground truth test
images in Figure 1, Figure 2, Figure 3 and Figure 4. In each figure, we
compare the wavelet-based and QuantifAI models, and we include
the dirty reconstruction as a reference. The metric used to compare
the RI image reconstruction is the SNR expressed in dB defined as
follows

SNR(𝒙, 𝒙gt) = −20 log10

( ∥𝒙gt − 𝒙∥2
∥𝒙gt∥2

)
, (52)

where 𝒙gt corresponds to the reference or ground truth, and 𝒙 to the
estimation, and ∥ · ∥2 is the usual ℓ2 norm.

The quantitative reconstruction performance results are presented

in Table 1. The MAP reconstruction from QuantifAI performs sig-
nificantly better than the wavelet-based counterpart in every im-
age from our dataset. The performance gain lies between 1.9dB
and 12.7dB, with an average gain of 7dB. It is difficult to see the
QuantifAI improvements by eye when inspecting reconstructed im-
ages. However, when observing the errors in the fourth column, the
improved quality of QuantifAI’s reconstructions becomes evident.
Shifting towards the sampling results, we observe a similar behaviour
of the MMSE reconstruction in favour of QuantifAI’s images. The
MAP is considerably faster than the MMSE, relying on optimisation
rather than posterior sampling. In addition, the MAP consistently
provides improved reconstruction performance with respect to the
MMSE.

The posterior standard deviation provides a qualitative way to val-
idate the posterior model and its uncertainties. The comparison of
the posterior standard deviation with the MAP reconstruction er-
ror shows a higher correlation for the QuantifAI model than the
wavelet-based model. In addition, the posterior standard deviation
of QuantifAI shows lower variance than its wavelet-based counter-
part, which is in agreement with QuantifAI’s smaller reconstruction
error. For example, in image W28 in Figure 2, we observe in subfig-
ure (2j) that the posterior standard deviation value is large near the
edges of the ground truth image. It is reassuring that QuantifAI’s
reconstruction error also shows the same behaviour.

The performance results showcase the expressive power of the
CRR-NN-based prior even if the regulariser is constrained to be
convex. The results also confirm the generalisation power of the CRR-
NN-based prior. Even if trained on natural images, the CRR-NN can
provide remarkable reconstruction performances for astronomical
images and meaningful posterior standard deviations.

5.4 Hypothesis testing of image structure

We start by carrying out hypothesis tests of image structure, which
are the most scalable UQ techniques we will study. First, a surrogate
image is created by modifying one region of interest. It only takes one
further evaluation of the likelihood and prior potential to carry out
the hypothesis test. The test helps to quantitatively answer a scientific
question with a 100(1−𝛼)% confidence level. The scientific question
targeted depends on the constructed surrogate image, and in this
work, we consider two scenarios.

In the first scenario, we consider a particular structure in the re-
constructed intensity image. We can query whether the structure’s
origin is physical or not. For example, the structure could be a recon-
struction artefact or a physical process. Figure 5 shows this option,
where we have analysed different regions of the four images. The first
four inpainted regions correspond to physical structures, and the fifth
region, i.e., region number 2 of image 3C288, does not correspond
to a physical structure. The surrogate images are produced with an
inpainting algorithm using QuantifAI’s prior so that the inpainted
region agrees with the prior.

The second scenario is to blur the finer structure in the recon-
structed image and perform a hypothesis test to elucidate the ques-
tion of whether the blurred structure is physical or not. The test is
illustrated in Figure 6. In this case, all four blurred images represent
physical structures.

In both cases, we compare the hypothesis test using a MAP-based
approach described in this work and a sampling-based approach for
validation. In the MAP-based approach, we build the HPD region
in Equation 31 with the approximation in Equation 32 and use the
MAP estimation as our reconstruction. In the sampling-based ap-
proach, we use the MMSE as the reconstruction, i.e., the mean of
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Figure 1. RI image reconstructions for M31. The images are shown in a log10 scale except for subfigure (a). Top row: The first two images show the ground
truth intensity image in linear and log10 scales, respectively. The third image shows the dirty reconstruction, computed by applying the pseudo-inverse of the
measurement operator on the observations. The fourth image shows the error of the dirty reconstruction with respect to the ground truth. Middle row: We show
the results of the wavelet-based model. The first and second columns show the minimum mean squared error (MMSE) estimator and the posterior standard
deviation, respectively. Both images are computed using the 5 × 104 generated posterior samples. The third column shows the MAP reconstruction obtained
through an optimisation algorithm. The fourth column depicts the error of the MAP reconstruction with respect to the ground truth. Bottom row: We present
the results of the QuantifAI model. The columns are presented in the same order as for the Wavelet reconstructions in the middle row. For every reconstruction,
we display the SNR with respect to the ground truth in the top left corner. Compared with the wavelet-based model, QuantifAI recovers a reconstruction with
a higher SNR and shows more meaningful uncertainties, which can be seen by comparing the posterior standard deviation and the MAP reconstruction error.

the posterior samples, and compute the threshold defining the HPD
region using the quantile function on the potentials of the posterior
samples following Cai et al. (2018a, §5.2).

Table 2 presents the results for the inpainting hypothesis test,
where the inpainted surrogates are shown in Figure 5. The MAP- and
sampling-based results are consistent in all the images studied, where
the threshold computed with the posterior samples is slightly tighter
than the MAP-based approximation. The hypothesis tests correctly
classify the structure in images M31, W28 and 3C288, including
the two cases of the latter image. The UQ methods cannot make
a strong statistical statement about the structures in the Cygnus A
image. In this image, where the inpainted region has a tiny physical
structure, the potentials of the inpainted surrogate image rest close
to the MAP and MMSE estimators. We include the hypothesis test
results of the same inpainting experiment for the wavelet-based model
in Appendix A1 to provide a comparison between the models. We
used the wavelet prior to inpaint the region of interest to allow for
a fair comparison. All results from the wavelet-based model are in
agreement with QuantifAI.

The results from the blurred surrogates of Figure 6 are presented
in Table 3. In all the images, the hypothesis test concludes that the

blurred fine structure is physical as the potential falls out of the HPD
region. The MAP- and sampling-based results are consistent with
each other.

The different hypothesis tests have shown consistent results be-
tween the sampling-based and highly scalable MAP-based results.
In addition, the results from the hypothesis tests are coherent be-
tween the QuantifAI and wavelet-based model. We remark that the
approach based on the MAP requires one further measurement op-
erator evaluation to carry out the hypothesis test. The test provides
a highly scalable way to answer scientific questions about the uncer-
tainty of the RI imaging reconstructions.

5.5 Local credible intervals

We have exploited the approximation of the HPD region from Sec-
tion 4.1 based on the MAP estimations and a credible level of 99%.
The approximate HPD regions were then used to compute the LCIs,
whose lengths per pixel are visualized as an image, c.f. Figure 7.
The LCI lengths are displayed after subtracting the mean LCI length
overall superpixels in the image, which is shown in the top left corner
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Figure 2. RI image reconstructions for W28. The order of the images follows the M31 results presented in Figure 1. Compared with the wavelet-based model,
QuantifAI recovers a reconstruction with a higher SNR and shows more meaningful uncertainties, which can be seen by comparing the posterior standard
deviation and the MAP reconstruction error.

Table 2. Hypothesis test results for the inpainted surrogates in Figure 5 using the QuantifAI model. The function ( 𝑓 + 𝑔) ( ·) corresponds to the combined
potential of the likelihood and the prior. The reconstruction �̂�∗ represents the point estimate used in the sampling or optimisation scenarios, which are the MMSE
and the MAP, respectively. The SK-ROCK method corresponds to the posterior sampling techniques. The image �̂�∗,sgt corresponds to the surrogate image,
where the areas of interest shown in Figure 5 have been inpainted. The isocontours, �̂�0.01, or threhsolds, are calculated with an 𝛼 of 0.01 giving a credible set
of 99%. In the MAP row, the threshold is computed following the approximation in Equation 32. In the SK-ROCK row, the threshold is computed from the
posterior samples following Cai et al. (2018a). The symbols ✓ and ✗ in the Ground truth column indicate if the inpainted region contains a physical structure
from the ground truth or not, respectively. In the last column, the ✓ indicates that the hypothesis test is conclusive. All values are scaled with 105. QuantifAI
is able to correctly reject the hypothesis for all images where the tested structure is physical except for the Cygnus A image. In all cases, the MAP-based and
MCMC sampling-based results agree with each other.

Images Test Ground Method Point estimate Surrogate Isocontour Hypothesis
area truth ( 𝑓 + 𝑔) ( �̂�∗ ) ( 𝑓 + 𝑔) ( �̂�∗,sgt ) �̂�0.01 test

M31 1 ✓
SK-ROCK 0.340 1.159 0.742 ✓

MAP 0.310 1.161 0.990 ✓

Cygnus A 1 ✓
SK-ROCK 0.125 0.182 0.848 ✗

MAP 0.105 0.169 1.450 ✗

W28 1 ✓
SK-ROCK 0.222 4.649 0.612 ✓

MAP 0.196 4.699 0.876 ✓

3C288
1 ✓

SK-ROCK 0.257 1.918 0.659 ✓

MAP 0.229 1.908 0.908 ✓

2 ✗
SK-ROCK 0.257 0.257 0.659 ✗

MAP 0.229 0.229 0.908 ✗
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Figure 3. RI image reconstructions for 3C288. The order of the images follows the M31 results presented in Figure 1. Compared with the wavelet-based model,
QuantifAI recovers a reconstruction with a higher SNR and shows more meaningful uncertainties, which can be seen by comparing the posterior standard
deviation and the MAP reconstruction error.
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Figure 4. RI image reconstructions for Cygnus A. The order of the images follows the M31 results presented in Figure 1. Compared with the wavelet-based
model, QuantifAI recovers a reconstruction with a higher SNR and shows more meaningful uncertainties, which can be seen by comparing the posterior
standard deviation and the MAP reconstruction error.
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Table 3. Hypothesis test results for the blurred surrogates of Figure 6 using the QuantifAI model. The description of Figure 6 holds in this table. All values
are scaled with 105. QuantifAI is able to correctly reject the hypothesis in all cases, and the MAP-based outcome agrees with its MCMC sampling-based
counterpart.

Images Method Initial Surrogate Isocontour Hypothesis
( 𝑓 + 𝑔) ( �̂�∗ ) ( 𝑓 + 𝑔) ( �̂�∗,sgt ) �̂�0.01 test

M31 SK-ROCK 0.340 1.905 0.742 ✓

MAP 0.310 1.906 0.990 ✓

Cygnus A SK-ROCK 0.125 9.642 0.848 ✓

MAP 0.105 9.643 1.450 ✓

W28 SK-ROCK 0.222 8.389 0.612 ✓

MAP 0.196 8.387 0.876 ✓

3C288 SK-ROCK 0.257 0.920 0.659 ✓

MAP 0.229 0.922 0.908 ✓

of the image. The UQ results for QuantifAI are presented for two
superpixel sizes, 4 × 4 and 8 × 8. We have omitted LCIs from the
wavelet-based prior for conciseness. The posterior standard devia-
tions at the two superpixel sizes are included for comparison with
the significantly faster MAP-based UQ technique of the LCIs. We
find a reasonable agreement between the structure in the LCI plots
and the posterior standard deviation. For example, the 3C288 image
with superpixel size 8 × 8 yields tighter LCIs in the two elliptical
regions and in the small connecting structure in the centre of the im-
age. The corresponding posterior standard deviation is smaller in the
aforementioned regions, which is expected as most of the observed
signal concentrates there. The LCIs and the posterior standard devi-
ation represent different quantiles, so we would not expect an exact
agreement even without any approximation in the computation of the
LCIs.

We observe, as expected, that the larger superpixels have tighter
LCIs, as seen in the mean LCIs shown on the top left corner of the
subfigures in Figure 7. The reconstructions are naturally less uncer-
tain on the larger scales due to the properties of our measurement
operator, as the visibilities are generally concentrated towards the
low frequencies. In addition, varying the value of a larger superpixel
saturates the HPD region faster than for a small superpixel. We have
also computed the LCIs for the superpixels of size 16 × 16, which
we have not included for conciseness. The corresponding mean LCI
values are 0.20, 0.08, 0.24, and 0.07 for the images in the same order
as in Figure 7.

When comparing the mean value of the LCIs from the four re-
constructions from Figure 7 we notice that two of them, M31 and
3C288, have higher uncertainty than the rest. The higher the uncer-
tainty, the larger the mean value of the LCI gets, as the superpixel
values need larger changes before they saturate the HPD region. Im-
age 3C288, with a superpixel size of 4 × 4, is an example where the
LCIs have saturated as the mean is close to unity3; therefore, the LCI
image’s detailed structure is lost due to the saturation. This saturation
highlights the need for superpixel sizes to be selected appropriately,
depending on the case at hand.

5.6 Fast pixel uncertainty quantification at different scales

The fast pixel UQ method results for the images M31 and W28 are
reported in Figure 8. We use the error between the MAP estimation
and the ground truth image, i.e., true error, to validate the predicted

3 n.b. The images are scaled in the range [0, 1].

uncertainty of the fast UQ method. The true error at different scales
can be computed following Equation 45,

�̂�GT, 𝑗 =
𝐽∑︁

𝑙=0,
𝑙≠ 𝑗

𝚿𝑙 𝒂GT,𝑙 +𝚿 𝑗 �̂�MAP, 𝑗 , (53)

where 𝒂GT,𝑙 are the wavelet decomposition coefficients of the ground
truth image at multi-resolution level 𝑙. We have replaced the ground
truth image’s wavelet coefficient at a single level with the coefficients
from the MAP reconstruction.

We observe a good agreement between the predicted and ground
truth errors at the different multi-resolution levels. There is an over-
estimation of the errors, which can come from two sources. First,
the approximation of the HPD region is conservative, as it has been
discussed in Pereyra (2017). Second, the MAP estimation is already
missing some of the fine or high-frequency structures in the ground
truth images. This fact can be seen in the MAP reconstruction errors
in subfigures 1h and 2h. The missing high-frequency structure is ex-
pected due to the properties of the measurement operator discussed
in Section 2.1.

The structure from the chosen wavelet representation, 𝚿, under-
pinning the UQ method can be observed in the predicted errors. This
structure is visible mainly in the higher frequencies of the W28,
where point sources are in the image. The wavelet structure should
be taken into account when analysing the reconstruction errors.

This fast pixel UQ method allows us to approximate the reconstruc-
tion errors made at different scales for a fraction of the computational
cost of the LCI pixel UQ method. The evaluations of the measure-
ment operators are reduced by three orders of magnitude, resulting
in an ultra-fast and truly scalable pixel UQ method. Furthermore, a
single nonlinear equation solve, e.g. root finding problem, of the new
pixel UQ method suffices to predict the errors at all scales, while
with LCIs, we are required to repeat the process for each superpixel
size.

5.7 Computation time

The computation wall-clock time for both models, QuantifAI and
the wavelet-based, are summarised in Table 4. All the computations
for both models were done using an Nvidia-A100 40GB GPU using
Pytorch (Paszke et al. 2019). We observe a lower computation time for
the QuantifAI model with respect to its wavelet-based counterpart.
One reason is the lightweight CRR-NN model that quickly evaluates
its gradient and potential. Note that the regularisation strength has
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Figure 5. Hypothesis test of different regions of the four QuantifAI MAP re-
constructions for M31, W28, Cygnus A, and 3C288. All the images are shown
in log10 scale. The left column shows the respective MAP reconstruction with
the region of interest framed in a red rectangle. The right column shows the
surrogate images inpainted using the QuantifAI prior. The first four rows
show regions corresponding to physical structures present in the ground truth
images. The last row corresponds to a non-physical region. Results of the
hypothesis tests are summarised in Table 2.

an impact on the number of iterations and it could be changed to
favour a faster convergence. The regularisation strength was chosen
to optimize MAP reconstruction quality.

The results shown in Table 4 highlight the importance of relying
on optimisation-based rather than sampling-based reconstructions
when focusing on the scalability of the method. There is a difference
of approximately four orders of magnitude in the computation time
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Figure 6. Hypothesis test of the fine structure in the four QuantifAI MAP
reconstructions for M31, W28, Cygnus A, and 3C288. All the images are
shown in log10 scale. The fine structure is blurred using a Gaussian kernel
with a standard deviation of 3.5 pixels and a radius of 7 pixels. The blurred
surrogate images in the second column are constructed by blurring the MAP
reconstruction shown in the first column. The hypothesis tests are done with
the QuantifAI model.

of the MAP and the MMSE which relies on MCMC sampling tech-
niques. Focusing on UQ, the posterior sampling is 60 times slower
than the computation of the LCIs with 8 × 8 superpixels and more
than 37500 times slower than the fast pixel UQ proposed in this
work. The new fast pixel UQ provides an extremely rapid approach
to providing pixel-based UQ, over 630 times faster than the 8 × 8
LCIs.

The evaluation of the measurement operator is the most time-
consuming operation in a real large-scale RI imaging scenario. If we
target scalability, we need to monitor the number of measurement op-
erator evaluations. Table 5 summarises the number of measurement
operator evaluations required for the UQ techniques. The results are
only shown for the QuantifAI model as they are representative of the
wavelet-based model. As mentioned before, we note the reduction
of evaluations between optimisation and sampling-based reconstruc-
tions. We remark on the reduction in the number of evaluations for
the UQ tasks, approximately 3 orders of magnitude between the sam-
pling and the LCIs, and 3 subsequent orders of magnitude between
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Figure 7. Length of the local credible intervals (LCIs), cf. Bayesian error bars, computed with a 99% credible level using superpixel sizes of 4 × 4 and 8 × 8.
Each column represents one of the four images in our dataset. The first row shows the MAP estimation of each image at its original resolution. The second row
displays the variation of the LCIs around their mean, recorded in a box in the upper left corners. This display choice allows us to visualise the structure of the
LCIs better while keeping the LCIs mean information. The third row presents the posterior standard deviation computed with the same superpixel size. The
fourth and fifth rows present the equivalent information for the superpixel size of 8 × 8. There is reasonable agreement between the uncertainty captured by the
LCI and the posterior standard deviation.

RASTI 000, 1–21 (2023)



18 T. I. Liaudat et al.

M31 W28

-2.00

-1.50

-1.00

-0.50

0.00

-2.00

-1.50

-1.00

-0.50

0.00

-2.00

-1.50

-1.00

-0.50

0.00

-2.00

-1.50

-1.00

-0.50

0.00

(a) Thresholded MAP (b) MAP estimation (c) Thresholded MAP (d) MAP estimation

Errors Errors
Predicted True errors Predicted True errors

-4.00

-3.00

-2.00

-1.00

0.00

Le
ve

l4

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

Le
ve

l3

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

Le
ve

l2

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

Le
ve

l1

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

A
ll

le
ve

ls

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

Figure 8. Fast pixel uncertainty quantification (UQ) with the QuantifAI model on the images M31 and W28. The first two columns correspond to M31, while
the last two columns to W28. The first row displays the pairs of the thresholded MAP reconstruction that saturates the HPD region versus the original MAP
reconstruction. The following rows compare the predicted error of the thresholded MAP computed with the fast pixel UQ method against the MAP reconstruction
error using ground truth images at each wavelet scale. The last row shows the cumulative error when considering all scales.
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Table 4. Computation wall-clock times for the W28 image in seconds for
both models being compared.

Models MAP Posterior LCIs Fast
optim. sampling 8 × 8 pixel UQ

Wavelet-based 0.94 36.0 × 103 149.7 —
QuantifAI 0.64 6.44 × 103 108.2 0.17

Table 5. The number of measurement operator evaluations used by the Quan-
tifAI for the W28 image. We do not distinguish between the measurement
operator and its adjoint. Therefore, evaluating the log-likelihood gradient
counts as two evaluations of the measurement operator. The fast pixel UQ is
three and six orders of magnitude faster than the MCMC sampling and LCIs,
respectively.

MCMC LCIs LCIs Fast
sampling 8 × 8 16 × 16 pixel UQ

11 × 106 81.5 × 103 21.2 × 103 28

the LCIs and the fast pixel UQ. These results make the fast pixel
UQ 6 orders of magnitude faster than MCMC sampling. The MAP
estimation for the CRR required 1082 measurement operator evalua-
tions. However, the algorithm’s settings were chosen to maximise the
reconstruction SNR. By modifying the regularisation parameter of
the CRR-based prior, we can reduce the number of evaluations by an
order of magnitude. Recent developments in code parallelisation for
RI imaging reconstruction algorithms4 (Pratley et al. 2019a; Pratley
& McEwen 2019) could be integrated to push the scalability of the
method further.

6 CONCLUSIONS

In this work, we propose a new method coined QuantifAI that ad-
dresses uncertainty quantification in radio-interferometric (RI) imag-
ing with data-driven (learned) priors in very high-dimensional set-
tings. We have focused on three fundamental points in the RI imaging
pipeline: scalability, estimation performance, and uncertainty quan-
tification (UQ).

Our model builds upon a principled Bayesian framework for the
UQ analysis, which is known to be computationally expensive when
exploiting MCMC sampling methods. However, in this work, we
leverage convex optimisation techniques to estimate the maximum-
a-posteriori (MAP), the point estimate of the posterior distribution
we use as reconstruction. We restrict our model to a log-concave pos-
terior distribution to remain highly scalable and have Bayesian UQ
techniques. This restriction is equivalent to having convex potentials
for our likelihood and prior. In this scenario, we can exploit an ap-
proximation of the high posterior density (HPD) region, which only
requires the MAP estimation (Pereyra 2017) and bypasses expensive
sampling techniques.

We want to include data-driven priors that can encode complex
information learned implicitly from training data making them more
expressive. Consequently, the learned priors allow us to improve
performance with respect to previous models based on handcrafted

4 https://github.com/astro-informatics/purify and https://github.com/astro-
informatics/sopt

priors (Cai et al. 2018b), e.g., wavelet-based sparsity-promoting pri-
ors. To support fast UQ techniques, our models must be convex,
hence we adopt the recently introduced learnable convex-ridge reg-
ulariser neural network (CRR-NN, Goujon et al. 2023b). The CRR-
NN-based prior is performant, reliable and has shown to be robust
to data distribution shifts. The QuantifAI model uses an analytic
physically motivated model for the likelihood and the learned CRR-
NN-based prior. In this work we are focusing on the methodology,
which is why we have only considered small problems, i.e., images
of 256×256. Nevertheless, QuantifAI can be integrated into the dis-
tributed frameworks (Pratley et al. 2019a; Pratley & McEwen 2019),
which is the focus of ongoing work.

Numerical experiments are conducted with four images repre-
sentative of RI imaging. We compare the QuantifAI model with
the model containing a wavelet-based prior of Cai et al. (2018b).
Our results show a considerable improvement in the reconstruction
performance for QuantifAI. We validate our results against pos-
terior samples from MCMC sampling algorithms and compute the
posterior standard deviation. We found that QuantifAI produced
more meaningful posterior standard deviations in comparison to the
wavelet-based model.

We explore several MAP-based UQ techniques that rely on the
approximate HPD region. We carry out hypothesis tests of image
structure to asses if some structures observed in the reconstructions
are physical. We then computed local credible intervals (LCIs c.f.
Bayesian error bars) to measure the pixel-wise uncertainty. These
two approaches were proposed by Cai et al. (2018b), and in this
work, we validated them with MCMC posterior sampling results.
Even if LCIs represent an already scalable alternative to sampling-
based methods to provide pixel-wise UQ, they remain expensive
for SKA-size data. Therefore, we proposed a novel pixel-wise UQ
technique to approximate pixel errors at different scales that is three
orders of magnitude faster than the LCIs. The new approach is based
on thresholding the coefficients of a wavelet representation of the
reconstruction until the HPD region saturates and is six orders of
magnitude faster than sampling-based techniques.

QuantifAI represents a highly scalable and performant approach
to address UQ in RI imaging. In this work, we have compared Quan-
tifAI to a wavelet-based model using numerical experiments and a
variety of metrics. However, as both models rely on the Bayesian
framework, we could make a Bayesian model comparison, a prin-
cipled approach to model selection and determine which model the
data favours. Recent developments in McEwen et al. (2023) extend
the model comparison to the learnt setting, with data-driven priors.
The focus of ongoing work is to implement the proposed methodol-
ogy in existing RI imaging frameworks purify5 (Carrillo et al. 2014;
Pratley et al. 2018; Pratley et al. 2019b) and sopt6 (Carrillo et al.
2012; Onose et al. 2016) to exploit massively parallelised comput-
ing environment (Pratley et al. 2019a; Pratley & McEwen 2019). In
the near future, we plan to benchmark the speed and scalability of
QuantifAI in a highly realistic setting.

A new perspective is to relax the convexity constraint of the prior
by exploiting the fact that the posterior potential needs to be con-
vex (rather than the prior) and that the RI imaging likelihood is
already strongly convex. The relaxation of the CRR regulariser has
been studied in a very recent work (Goujon et al. 2023a), where
a weakly-convex-ridge-regulariser neural network (WCRR-NN) has
been proposed. If the WCRR-NN is adopted, it could further en-

5 https://github.com/astro-informatics/purify
6 https://github.com/astro-informatics/sopt
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hance the expressiveness of the regulariser and the reconstruction
performance of QuantifAI in the RI imaging problem.
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A1 Hypothesis testing of image structure

Figure A1 and Table A1 present the results of the hypothesis testing
of structure for the model with the sparsity-promoting prior.
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Table A1. Hypothesis test results for the inpainted surrogates from Figure A1 generated with the wavelet-based model. All values are in units 104. The description
of Table 2 applies in this table.

Images Test Ground Method Initial Surrogate Isocontour Hypothesis
area truth ( 𝑓 + 𝑔) ( �̂�∗ ) ( 𝑓 + 𝑔) ( �̂�∗,sgt ) �̂�0.01 test

M31 1 ✓
SK-ROCK 0.448 1.396 1.105 ✓

MAP 0.359 1.335 1.039 ✓

Cygnus A 1 ✓
SK-ROCK 0.480 0.533 1.639 ✗

MAP 0.444 0.514 1.789 ✗

W28 1 ✓
SK-ROCK 0.353 5.190 0.879 ✓

MAP 0.284 5.204 0.964 ✓

3C288
1 ✓

SK-ROCK 0.729 2.487 1.398 ✓

MAP 0.654 2.409 1.333 ✓

2 ✗
SK-ROCK 0.729 0.729 1.398 ✗

MAP 0.654 0.654 1.333 ✗
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(a) MAP reconstruction (b) Inpainted surrogate

Figure A1. Hypothesis test of different regions of the four images, M31,
W28, Cygnus A, and 3C288. All the images are shown in log10 scale. The
figure is similar to Figure 5, but the wavelet-based model has been used to
generate the MAP. The wavelet prior was used to inpaint the surrogate image.
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