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ABSTRACT
We perform a definitive analysis of Bianchi VIIh cosmologies with WMAP observations of
the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis tech-
niques are developed to study anisotropic cosmologies using full-sky and partial-sky, masked
CMB temperature data. We apply these techniques to analyse the full-sky internal linear com-
bination (ILC) map and a partial-sky, masked W-band map of WMAP 9-year observations.
In addition to the physically motivated Bianchi VIIh model, we examine phenomenological
models considered in previous studies, in which the Bianchi VIIh parameters are decoupled
from the standard cosmological parameters. In the two phenomenological models considered,
Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found
in full-sky ILC data. The corresponding best-fit Bianchi maps recovered are similar for both
phenomenological models and are very close to those found in previous studies using earlier
WMAP data releases. However, no evidence for a phenomenological Bianchi component is
found in the partial-sky W-band data. In the physical Bianchi VIIh model we find no evidence
for a Bianchi component: WMAP data thus do not favour Bianchi VIIh cosmologies over
the standard Λ Cold Dark Matter (ΛCDM) cosmology. It is not possible to discount Bianchi
VIIh cosmologies in favour of ΛCDM completely, but we are able to constrain the vorticity of
physical Bianchi VIIh cosmologies at (ω/H)0 < 8.6 × 10−10 with 95% confidence.

Key words: cosmology: cosmic background radiation – cosmology: observations – methods:
data analysis – methods: statistical.

1 INTRODUCTION

The Λ Cold Dark Matter (ΛCDM) cosmological concordance
model has recently emerged as an accurate description of our Uni-
verse. In this model the current Universe is dominated by dark
energy and dark matter, with structure seeded by primordial den-
sity perturbations generated during an inflationary phase in the
early Universe. Support for ΛCDM is derived from a range of re-
cent high-precision cosmological observations, with measurements
of the cosmic microwave background (CMB), in particular those
made by the Wilkinson Microwave Anisotropy Probe (WMAP)
(Komatsu et al. 2011; Larson et al. 2011; Hinshaw et al. 2012),
playing a leading role. While the concordance model is undeniably
successful, it is important to test the assumptions on which it is
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based. One of the most fundamental assumptions of ΛCDM cos-
mology is the cosmological principle; namely, that the Universe is
homogenous and isotropic on large scales. Evidence that this as-
sumption is inaccurate would necessitate revision of ΛCDM.

In this article we seek to test the global isotropy of the Uni-
verse. When studying phenomena beyond cosmological concor-
dance it is important to do so in the context of a well-motivated
cosmological model. We focus on the homogenous but anisotropic
Bianchi models. In these models the assumption of isotropy about
each point in the Universe is relaxed, yielding more general so-
lutions to Einstein’s field equations. For small anisotropy, as de-
manded by current observations, linear perturbation about the stan-
dard Friedmann-Robertson-Walker (FRW) metric may be applied,
leading to a subdominant, deterministic contribution to the CMB
fluctuations. In this setting CMB fluctuations may be viewed as the
sum of a deterministic Bianchi contribution and the usual stochastic
contribution that arises in the ΛCDM model.
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The induced CMB temperature fluctuations that result in the
homogenous Bianchi models were first studied by Collins & Hawk-
ing (1973) and Barrow et al. (1985) (and subsequently Barrow
1986), ignoring the effects of dark energy. Barrow et al. (1985)
focus on the most general Bianchi VIIh and IX types, correspond-
ing to open/flat and closed universes respectively. Since tight con-
straints have already been placed on Bianchi IX models by Bar-
row et al. (1985), we follow the recent trend in the literature and
focus on the open/flat Bianchi VIIh models, in which geodesic fo-
cusing produces spiral-type contributions in the CMB. Although
we focus on CMB temperature fluctuations only in this article, we
note that the CMB polarisation contributions induced in Bianchi
models have also been studied recently (Pontzen & Challinor 2007;
Pontzen 2009; Pontzen & Challinor 2011).

Bianchi VIIh models were first compared to COBE data by
Bunn et al. (1996) and Kogut et al. (1997), and to WMAP data
by Jaffe et al. (2005, 2006b). A statistically significant correlation
between one of the Bianchi VIIh models and the WMAP internal
linear combination (ILC) map (Bennett et al. 2003) was discov-
ered by Jaffe et al. (2005) by modelling the CMB as an unknown
Bianchi component on top of the (fixed) best-fit WMAP ΛCDM
cosmology. However, it was noted that the parameters of the best-
fit Bianchi component were incompatible with those of ΛCDM.
Nevertheless, quite remarkably it was found that when the WMAP
data were ‘corrected’ for the best-fit Bianchi map, some of the so-
called ‘anomalies’ reported in WMAP data disappeared (Jaffe et al.
2005, 2006b; Cayon et al. 2006; McEwen et al. 2006). A modi-
fied template-fitting technique was performed by Land & Magueijo
(2006) and, although a statistically significant template fit was not
reported, the corresponding ‘corrected’ WMAP data were again
free of many large scale ‘anomalies’. Subsequently, Ghosh et al.
(2007) used the bipolar power spectrum of WMAP data to con-
strain the amplitude of any Bianchi component in the CMB.

Following this renewed interest in Bianchi models, the CMB
temperature fluctuations induced in Bianchi VIIh models incorpo-
rating dark energy were derived by Jaffe et al. (2006c) and Bridges
et al. (2007) (and subsequently by Pontzen & Challinor (2007),
Pontzen (2009) and Pontzen & Challinor (2011), where recombi-
nation is treated in a more sophisticated manner and reionisation is
supported). In this scenario, a degeneracy between the matter and
dark energy densities, Ωm and ΩΛ respectively, is introduced, but
the cosmological parameters of the best-fit Bianchi template found
in WMAP data nevertheless remain inconsistent with constraints
from the CMB alone (Jaffe et al. 2006a,c). Furthermore, Pontzen
& Challinor (2007) compared the polarisation power spectra of the
best-fit Bianchi VIIh model found by Jaffe et al. (2006a) with the
WMAP 3-year data (Page et al. 2007) and also concluded that the
model could be ruled out since it produced greater polarization than
observed in the WMAP data. A Bayesian analysis of Bianchi VIIh

models was performed by Bridges et al. (2007) using WMAP ILC
data to explore the joint cosmological and Bianchi parameter space
via Markov chain Monte Carlo sampling. The Ωm–ΩΛ degeneracy
of Bianchi VIIh models was studied more thoroughly and, although
a similar best-fit Bianchi template was found in WMAP data, it was
again determined that the parameters of the resulting Bianchi cos-
mology were inconsistent with standard constraints. In a following
study by Bridges et al. (2008) it was suggested that the CMB ‘cold
spot’ (Vielva et al. 2004; Cruz et al. 2006; Vielva 2010) could be
driving the best-fit Bianchi component found in WMAP data.

In this article we perform a definitive study of Bianchi VIIh

cosmologies with WMAP temperature data. We develop a Bayesian
analysis technique capable of studying Bianchi models using

Figure 1. Simulated deterministic CMB temperature contributions
in Bianchi VIIh cosmologies for varying x and Ωtotal (left-to-right
Ωtotal ∈ {0.10, 0.50, 0.95}; top-to-bottom x ∈ {0.1, 0.3, 0.7, 1.5, 6.0}). In
these maps the spiral pattern typical of Bianchi VIIh induced temperature
fluctuations is rotated from the South pole to the Galactic centre for illustra-
tional purposes. The parameter values κ = +1 and (α, β, γ) = (0◦,−90◦, 0◦)
were also set when generating these simulations.

partial-sky CMB observations, allowing us for the first time to
study individual WMAP bands rather than the ILC map, which was
not originally intended for cosmological analysis (Bennett et al.
2003). We sample the complete set of parameters describing the
ΛCDM cosmology and the Bianchi VIIh model simultaneously, and
perform the first rigorous study of the physically motivated sce-
nario where the parameters of the Bianchi model are coupled to the
standard cosmology. To make comparisons with previous work, we
also consider the non-physical scenario where the Bianchi parame-
ters are decoupled from the standard cosmological parameters. We
employ the latest (and final) 9-year release of WMAP observations
(previous studies have considered WMAP 1- and 3-year data only),
and perform a Bayesian model-selection analysis of Bianchi VIIh

models, using nested sampling methods (Skilling 2004; Feroz &
Hobson 2008; Feroz et al. 2009), to determine whether WMAP data
suggest we inhabit an anisotropic Bianchi VIIh universe instead of
a standard isotropic ΛCDM universe.

The remainder of this article is structured as follows. In
Sec. 2 we briefly review Bianchi VIIh cosmologies. We describe
the Bayesian analysis techniques that we develop to study full- and
partial-sky CMB observations in Sec. 3. Although focus is given
to Bianchi models, these techniques are generic and may be used
to study other general anisotropic cosmologies. In Sec. 4 we ap-
ply our analysis to WMAP 9-year data to constrain Bianchi VIIh

cosmologies. Concluding remarks are made in Sec. 5.

2 BIANCHI VIIh COSMOLOGIES

In this section we review Bianchi VIIh cosmologies, focusing on
their description; we defer technical details to Barrow et al. (1985)
and Jaffe et al. (2006c). Note that we adopt the solutions to the
temperature fluctuations induced in Bianchi VIIh models when in-
corporating dark energy, as derived by Lasenby and also adopted
by Bridges et al. (2007).
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Bianchi VIIh models contain a free parameter, usually denoted
x, as first identified by Collins & Hawking (1973). This parameter
is related to the h parameter of type VIIh models by

x =

√
h

1 −Ωtotal
, (1)

where the total energy density Ωtotal = Ωm + ΩΛ. Physically, x
is related to the characteristic wavelength over which the princi-
ple axes of shear and rotation change orientation. Consequently, x
acts to change the ‘tightness’ of the spiral-type CMB temperature
contributions that are typical of Bianchi VIIh cosmologies. Bianchi
VIIh models are also described by their shear modes (σ12/H)0 and
(σ13/H)0, vorticity (ω/H)0, and handedness κ, where H is the Hub-
ble parameter. The handedness parameter takes the values κ = +1
and κ = −1 for maps with right- and left-handed spirals respec-
tively. Vorticity is related to the other parameters by (Barrow et al.
1985) (

ω

H

)
0

=
(1 + h)1/2(1 + 9h)1/2

6 x2Ωtotal

√(
σ12

H

)2

0
+

(
σ13

H

)2

0
. (2)

The spherical harmonic coefficients of the Bianchi
VIIh induced temperature component are proportional to
[(σ12 ± iσ13)/H]0 and are non-zero for azimuthal modes m = ∓1
only (Barrow et al. 1985; McEwen et al. 2006; Pontzen & Challi-
nor 2007). Hence, varying the phase of σ12 + iσ13 corresponds
to an azimuthal rotation, i.e. a change of coordinates, while the
rotationally invariant part depends on σ2

12 + σ2
13, and we are thus

free to choose equality of shear modes σ = σ12 = σ13 (Pontzen
& Challinor 2007), which we do for consistency with previous
studies (e.g. Jaffe et al. 2005). The amplitude of deterministic
Bianchi VIIh temperature maps may be characterised by either
(σ/H)0 or (ω/H)0 since these parameters influence the amplitude
of the map only and not its morphology.

Since the CMB temperature fluctuations induced in Bianchi
VIIh models are anisotropic on the sky, the orientation of the CMB
contribution may vary also, introducing three additional degrees-
of-freedom. The orientation of a map representing the Bianchi VIIh

CMB fluctuations is described by the Euler angles1 (α, β, γ), where
for (α, β, γ) = (0◦, 0◦, 0◦) the spiral pattern typical of Bianchi VIIh

temperature fluctuations is centred on the South pole. To sum-
marise, Bianchi VIIh models may be described by the parameter
vector ΘB = (Ωm, ΩΛ, x, (ω/H)0, α, β, γ) (note that we do not in-
clude the handedness parameter κ in ΘB since this is used to distin-
guish between left- and right-handed models).

In the analysis performed herein the BIANCHI22 code is used
to simulate the temperature fluctuations induced in Bianchi VIIh

models. Bianchi VIIh models induce only large scale temperature
fluctuations in the CMB and, consequently, the resulting Bianchi
maps have a low band-limit both globally and azimuthally, i.e.
in both ` and m in spherical harmonic space; indeed, only those
harmonic coefficients with m = ±1 are non-zero (Barrow et al.
1985). In the BIANCHI2 code Bianchi VIIh temperature fluctua-
tions may be computed directly in either real or harmonic space.
In the analysis performed herein we compute temperature fluctu-
ations directly in harmonic space to avoid any pixelisation arte-
facts and since the resulting temperature fluctuations can be rotated
accurately and efficiently in harmonic space (see McEwen et al.

1 The active zyz Euler convention is adopted, corresponding to the rotation
of a physical body in a fixed coordinate system about the z, y and z axes by
γ, β and α respectively.
2 http://www.jasonmcewen.org/

2006) due to their low azimuthal band-limit. Examples of simu-
lated Bianchi VIIh temperature maps are illustrated in Fig. 1 for a
range of parameters.

3 BAYESIAN ANALYSIS OF ANISOTROPIC
COSMOLOGIES

We describe in this section a generic methodology to perform a
Bayesian analysis of anisotropic cosmologies using CMB observa-
tions. Since we are motivated by the analysis of Bianchi VIIh cos-
mologies, we consider a deterministic global template and pose the
analysis in harmonic space (where Bianchi VIIh contributions can
be computed accurately and rotated efficiently). The extension to
alternative settings, such as non-trivial topologies (Niarchou et al.
2003; Cornish et al. 2004; Dineen et al. 2005; Kunz et al. 2006;
Bielewicz & Riazuelo 2009), is also highlighted. Firstly, we de-
scribe a generic Bayesian analysis of anisotropic cosmologies, be-
fore restricting this to the specific settings of full- and partial-sky
CMB observations. Finally, we perform simulations to validate the
implementation of the methodology presented.

3.1 Bayesian analysis

By Bayes’ theorem we may write the posterior distribution of the
parameters Θ of our model of interest M, given data d, as

P(Θ | d,M) =
P(d |Θ,M) P(Θ |M)

P(d |M)
∝ P(d |Θ,M) P(Θ |M) , (3)

where P(d |Θ,M) is the likelihood, P(Θ |M) is the prior distribu-
tion of the parameters of the model, and P(d |M) is the Bayesian
evidence, which normalises the posterior distribution. The (unnor-
malised) posterior distribution encodes our inferred knowledge of
the parameters of the model, given the observational data.

We consider both models that include a Bianchi VIIh contribu-
tion in addition to a stochastic CMB component and those that do
not. We consider open and flat cosmologies where the cosmologi-
cal parameters are given by ΘC = (As, ns, τ, Ωbh2, Ωch2, ΩΛ, Ωk),
where AS is the amplitude of the primordial power spectrum, ns

is the scalar spectral index, τ is the optical depth of reionisation,
Ωbh2 is the physical baryon density, Ωch2 is the physical cold dark
matter density, ΩΛ is the dark energy density, Ωk is the curvature
density and H = 100 h; for the flat case Ωk = 0 and we recover the
standard six parameter model. For the models including a Bianchi
VIIh contribution, we consider the physical case where the Bianchi
parameters ΘB and cosmological parameters ΘC are coupled (i.e.
where the cosmological density parameters shared by ΘB and ΘC

are set equal) and also the non-physical case where they are not (the
latter case is considered to make comparisons with previous work).
The Bianchi VIIh parameters ΘB are described in Sec. 2.

For the case where a Bianchi VIIh template is embedded in
a stochastic CMB background described by its power spectrum
C`(ΘC), the likelihood is given by

P(d |ΘB,ΘC) ∝
1

√
|X(ΘC)|

exp
[
−χ2(ΘC,ΘB)/2

]
, (4)

where

χ2(ΘC,ΘB) =
[
d − b(ΘB)

]† X−1(ΘC)
[
d − b(ΘB)

]
, (5)

and where b(ΘB) is the deterministic Bianchi VIIh template and
X(ΘC) is the covariance matrix of the stochastic CMB component
(and any noise component included in the model). Eqn. (4) and
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Eqn. (5) are written in a generic manner, where the likelihood may
be given either in real or harmonic space. Since Bianchi VIIh tem-
plates can be computed accurately and rotated efficiently in har-
monic space, we specialise to a harmonic space representation,
where the data and Bianchi template are given by their spherical
harmonic coefficients: d = {d`m} and b(ΘB) = {b`m(Θ)}, respec-
tively, considered up to the harmonic band-limit `max. The covari-
ance matrix X(ΘC) is then also specified in harmonic space but dif-
fers depending on whether the full- or partial-sky setting is consid-
ered (we consider each setting in turn in subsequent subsections).
For the full-sky setting the covariance matrix is diagonal, whereas
this is not the case for the partial-sky setting (assuming isotropic
noise in both settings).

We have so far considered the setting where a subdominant,
deterministic template is embedded in a stochastic CMB back-
ground. However, it is straightforward to extend the analysis to the
setting where an anisotropic cosmology does not induce an embed-
ded deterministic template, but rather alters the covariance structure
of the stochastic CMB component; this is the case for non-trivial
topologies (e.g. Niarchou et al. 2003; Cornish et al. 2004; Dineen
et al. 2005; Kunz et al. 2006; Bielewicz & Riazuelo 2009). This set-
ting can be handled in the current framework simply by setting the
template component to zero and by replacing the covariance matrix
X(ΘC) with the appropriate covariance matrix for the anisotropic
cosmology. The coordinate orientation is again arbitrary in this set-
ting, hence the covariance matrix, or similarly the data, must be
varied over all three-dimensional orientations as specified by the
Euler angles. In this setting the χ2 of the likelihood is written

χ2(ΘA) = d†(α, β, γ) X−1(ΘA) d(α, β, γ) , (6)

where ΘA is the full set of parameters of the anisotropic cosmol-
ogy and d(α, β, γ) denotes the data rotated by Euler angles (α, β, γ).
Since we focus on Bianchi cosmologies here, we consider only the
likelihood with χ2 given by Eqn. (5) in the remainder of this article.

To determine whether the inclusion of a Bianchi VIIh compo-
nent better describes the data the Bayesian evidence is examined,
given by

E = P(d |M) =

∫
dΘ P(d |Θ,M) P(Θ |M) . (7)

Using the Bayesian evidence to distinguish between models natu-
rally incorporates Occam’s razor, trading off model simplicity and
accuracy. The odds ratio between two models M1 and M2 may be
written in terms of the Bayesian evidences of the models (E1 and
E2 respectively) by

P(M1 | d)
P(M2 | d)

=
E1

E2

P(M1)
P(M2)

. (8)

In the absence of any prior information about a preferred model,
i.e. when P(M1) = P(M2), the Bayes factor given by the ratio of
Bayesian evidences E1/E2 is thus identical to the ratio of the model
probabilities given the data. Consequently, the Bayes factor may be
used to distinguish models in this setting.

The Jeffreys scale (Jeffreys 1961) is often used as a rule-of-
thumb when comparing models via their Bayes factor. The log-
Bayes factor ∆lnE = ln(E1/E2) represents the degree by which
model M1 is favoured over model M2, assuming the models are
equally likely a priori. On the Jeffreys scale log-Bayes factors are
given the following interpretation: 0 6 ∆lnE < 1 is regarded as
inconclusive; 1 6 ∆lnE < 2.5 as significant; 2.5 6 ∆lnE < 5 as
strong; and ∆lnE > 5 as conclusive (without loss of generality we
have assumed E1 > E2). For reference, a log-Bayes factor of 2.5

corresponds to odds of approximately 1 in 12, while a factor of 5
corresponds to odds of approximately 1 in 150.

3.2 Full-sky analysis

In the full-sky setting the covariance matrix is given by
X(ΘC) = C(ΘC), where C(ΘC) is the diagonal CMB covariance ma-
trix with entries given by the power spectrum C`(ΘC) on its diag-
onal. A Bayesian analysis in this setting was first considered by
Bridges et al. (2007). To expose the detail of the analysis we make
the likelihood explicit in this setting. The likelihood, in terms of
the spherical harmonic coefficients of the data d`m and Bianchi VIIh

template b`m(ΘB), is given by

P({d`m} |ΘB,ΘC) ∝
`max∏
`=0

1
√

C`(ΘC)
exp

{
−

[d`0 − b`0(ΘB)]2

C`(ΘC)

}

×
∏̀
m=1

2
C`(ΘC)

exp
{
−
|d`m − b`m(ΘB)|2

C`(ΘC)

}
. (9)

In practice, it is more convenient numerically to work with the log-
likelihood function, given by

ln[P({d`m} |ΘB,ΘC)] ∝
`max∑
`=0

{
(2` + 1)ln[C`(ΘC)]

+
[d`0 − b`0(ΘB)]2

C`(ΘC)
+

2
C`(ΘC)

∑̀
m=1

|d`m − b`m(ΘB)|2
}
. (10)

In the case of a zero Bianchi component b(ΘB) = 0, Eqn. (10)
reduces to the log-likelihood function used commonly to compute
parameter estimates from the power spectrum estimated from CMB
data (e.g. Verde et al. 2003).

3.3 Partial-sky analysis

In the partial-sky setting a mask is applied in real space to excise
contaminated regions of the data (due to point-source or Galactic
contamination, for example). See, for example, the mask applied to
simulated CMB data in Fig. 4(a).

Various approaches can be adopted to deal with partial-sky
data. The standard approach is to multiply the map by a binary
mask. In this setting, the application of a mask induces coupling of
harmonic space modes in the resultant data, which can be viewed as
a convolution of the original covariance matrix and the mask trans-
fer function in harmonic space (the so-called coupling matrix). This
coupling can then be taken into account when making a compari-
son with theory (e.g. Hivon et al. 2002; Hinshaw et al. 2003). How-
ever, we take a different approach here, which avoids the need to
compute the coupling matrix explicitly (thereby avoiding the com-
putation of Wigner 3- j symbols).

We effectively consider full-sky data but add masking noise to
marginalise over the pixel values of the data in the masked region.
Gaussian masking noise m is added to the data d in real space:

s(ω) = d(ω) + m(ω) , (11)

where ω denotes angular coordinates on the sphere. The masking
noise is chosen to be zero-mean and large in the masked region of
the data (i.e. zeros of the mask), and zero elsewhere. Consequently,
the masking noise is anisotropic over the sky but may be chosen to
be uncorrelated, and may thus be defined by its covariance

〈m(ωi) m∗(ω j)〉 = δi j σ
2
m(ωi) , (12)

c© 2013 RAS, MNRAS 000, 1–15
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where δi j is Kronecker delta symbol, ωi denotes the angular coor-
dinate of pixel i, and the variance of the noise for pixel i is given
by

σ2
m(ωi) =

Σ2
m, ωi ∈ M

0, ωi ∈ S
2\M

, (13)

where Σ2
m is a constant masking noise variance. We adopt the

HEALPix (Górski et al. 2005) equal-area pixelisation of the sphere,
where the area of each pixel is Ωpix, in order to avoid dealing with
pixels of differing areas. Here M denotes the masked region of the
sky S2 and S2\M denotes the remaining region. By synthetically
adding masking noise that is much larger than the original data in
the masked region of the sky, we effectively marginalise over the
pixel values of the data in this region. Consequently, only the pixel
values of the data outside of the masked region have a large influ-
ence on the final analysis. We refer to a particular masking noise
realisation as a noisy mask. An example noisy mask is shown in
Fig. 4(d).

The noisy mask introduces coupling in harmonic space that
must be accounted for in the analysis. The effective signal s to be
analysed now includes the original data d and the noisy mask m;
thus its covariance is the sum of the covariance of the original data
and the noisy mask. The covariance of the noisy mask is given in
harmonic space by

M`′m′
`m = 〈m`m m∗`′m′ 〉 '

∑
ωi

σ2
m(ωi)Y∗`m(ωi) Y`′m′ (ωi) Ωpix

2 , (14)

where we have applied Eqn. (12) and again consider signals and
their covariance structure in harmonic space (since the analysis of
Bianchi VIIh cosmologies is most accurately and efficiently per-
formed in harmonic space). In Eqn. (14) we approximate the spher-
ical harmonic coefficients of the mask using discrete quadrature:

m`m =

∫
S2

dΩ(ω) m(ω) Y∗`m(ω) '
∑
ωi

Ωpix m(ωi) Y∗`m(ωi) ; (15)

note that this is necessarily an approximation since the noisy mask
is not band-limited and we adopt the HEALPix (Górski et al. 2005)
sampling scheme, which does not admit exact quadrature. Since the
underlying data d and noisy mask m are independent, the covari-
ance of the effective data s is given by X(ΘC) = C(ΘC) + M, where
C(ΘC) is again the diagonal CMB covariance matrix and M is the
non-diagonal noisy mask covariance matrix given by Eqn. (14).

To summarise, the partial-sky analysis proceeds as follows.
Firstly a zero-mean, Gaussian noisy mask realisation is con-
structed via Eqn. (12) and Eqn. (13), and its covariance struc-
ture is estimated by Eqn. (14). The effective signal under analy-
sis s is constructed by summing the original data and the noisy
mask realisation by Eqn. (11). The Bayesian analysis described
in Sec. 3.1 is performed, where the data under analysis is re-
placed with the effective signal s, with covariance matrix given by
X(ΘC) = C(ΘC) + M.3

3 In practice the masked region of the data to be excised will include un-
known contamination, rather than a CMB contribution only. Thus, the orig-
inal data d are masked before the procedure outlined here is performed. In
this setting the covariance matrix X(ΘC) = C(ΘC) + M is necessarily an
approximation, since the assumption that there is a CMB component in the
masked region is no longer valid. However, provided the noise variance Σ2

m
is chosen to be considerably larger than the expected CMB contribution, the
approximation is very accurate.

(a) CMB component

(b) Underlying Bianchi component

(c) CMB plus Bianchi components

(d) Recovered Bianchi component

Figure 2. Full-sky simulation at `max = 512. A Bianchi VIIh component
with a large amplitude is simulated (panel b) and embedded in a standard
stochastic CMB map (panel a), yielding a resultant CMB plus Bianchi map
(panel c) to which a beam and noise are applied. The full-sky Bayesian anal-
ysis described in Sec. 3.2 is applied to recover a MAP estimated Bianchi
component (panel d). The recovered Bianchi component (panel d) accu-
rately estimates the embedded component (panel b).

3.4 Implementation and validation

We have developed the ANICOSMO4 code to perform a Bayesian
analysis of anisotropic cosmologies. The Bayesian analysis de-
scribed in this section is implemented in ANICOSMO, both in the full-
and partial-sky settings. We adopt the MultiNest5 code (Feroz &
Hobson 2008; Feroz et al. 2009) to explore the posterior distribu-
tion and to compute Bayesian evidence values, both via nested sam-

4 The ANICOSMO code will soon be made publicly available from
http://www.jasonmcewen.org/.
5 http://www.mrao.cam.ac.uk/software/multinest/
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6 McEwen et al.

Figure 3. Posterior distributions corresponding to the full-sky simulation at `max = 512 shown in Fig. 2. The underlying parameter values of the simulation
are indicated by dashed vertical lines. Both cosmological and Bianchi VIIh parameters are estimated accurately, except for the optical depth of reionisation, τ,
which is not unexpected when using CMB temperature data alone. For model comparison purposes an unconstrained τ does not pose any great concern.

pling (Skilling 2004; Feroz & Hobson 2008; Feroz et al. 2009). The
CAMB6 code (Lewis et al. 2000) is used to compute the CMB power
spectrum C`(ΘC) for various cosmological parameters ΘC.

At present the ANICOSMO code is specialised to the study
of Bianchi VIIh cosmologies, where the likelihood is computed
through Eqn. (4) and Eqn. (5). However, ANICOSMO may be triv-
ially extended to handle the χ2 defined by Eqn. (6) and to study
other anisotropic cosmologies, such as non-trivial topologies; this
will be the focus of future work.

In the remainder of this subsection we perform simulations to
validate the Bayesian analysis method described here and its im-
plementation in the ANICOSMO code. In both the full- and partial-
sky settings, we simulate a CMB map and synthetically embed

6 http://camb.info/

a simulated Bianchi VIIh component. To approximate the finite-
resolution, noisy measurements of the CMB made by the WMAP
experiment (specifically those made in the highest-resolution, 94
GHz W band; Bennett et al. 2012), a Gaussian beam with full-
width-half-maximum (FWHM) 13.2′ and isotropic noise with
power spectrum N` = 0.02 (µK)2 are applied to the simulations.
To account for the beam and noise in the Bayesian analysis we
simply map C`(ΘC) → b2

` C`(ΘC) + N` when computing the CMB
covariance matrix and apply the beam to the Bianchi VIIh template
by mapping b`m(ΘB) → b` b`m(ΘB), where b2

` and N` are the beam
and noise power spectra, respectively. In these simulations we con-
sider the model where the Bianchi parameters ΘB and cosmologi-
cal parameters ΘC are coupled. Posterior distributions and evidence
values are then recovered by ANICOSMO for models including and
excluding a coupled Bianchi component in addition to the stan-
dard stochastic CMB component. For the purpose of validating the

c© 2013 RAS, MNRAS 000, 1–15
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Figure 5. Posterior distributions corresponding to the partial-sky simulation at `max = 32 shown in Fig. 4. The underlying parameter values of the simulation
are indicated by dashed vertical lines. Both cosmological and Bianchi VIIh parameters are estimated reasonably well, however since less data is now available
due to the lower `max and masking, the marginalised posterior distributions are not as accurate or well constrained as the full-sky setting, as is to be expected.
For model comparison purposes this does not pose any great concern.

implementation, we consider a Bianchi template with a relatively
large amplitude of (ω/H)0 = 2 × 10−9.

Full-sky simulations are shown in Fig. 2. Since the covari-
ance matrix X(ΘC) is diagonal in this setting, the analysis may
be run at high-resolution; hence, we set `max = 512 in this simu-
lation. The maximum-a-posteriori (MAP) estimated Bianchi VIIh

component recovered from the peak of the posterior distribution
P(Θ | d,M) is shown in Fig. 2(d) and is clearly an accurate estimate
of the embedded component shown in Fig. 2(b). The marginalised
posterior distributions recovered for each parameter are shown in
Fig. 3. Both cosmological and Bianchi VIIh parameters are es-
timated accurately, except for the optical depth of reionisation τ

which is not unexpected when using CMB temperature data alone.
τ is also unconstrained when considering the model absent of a
Bianchi component, thus for model comparison purposes an un-

constrained τ does not pose any great concern. Indeed, for this
simulation the model including a Bianchi component is favoured
conclusively with a log-Bayes factor of ∆lnE ∼ 50.

Partial-sky simulations are shown in Fig. 4. Since the covari-
ance matrix X(ΘC) is non-diagonal in this setting, the analysis is
considerably more computationally demanding than the full-sky
setting; hence, we set `max = 32 in this simulation. The MAP esti-
mated Bianchi VIIh component is shown in Fig. 4(e) and clearly
is an accurate estimate of the embedded component shown in
Fig. 4(b) (note that the embedded Bianchi component was rotated
such that the majority of its structure does not lie in the masked
region). A noisy mask variance of Σ2

m = 100 (mK)2 was adopted
since numerical tests showed this effectively marginalised masked
pixels in the data, while increasing Σ2

m further had little impact. The
marginalised posterior distributions recovered for each parameter

c© 2013 RAS, MNRAS 000, 1–15
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(a) Masked CMB component

(b) Underlying Bianchi component

(c) Masked CMB plus Bianchi components

(d) Noisy mask realisation

(e) Recovered Bianchi component

Figure 4. Partial-sky simulation at `max = 32. A Bianchi VIIh component
with a large amplitude is simulated (panel b) and embedded in a standard
stochastic CMB map (panel a), yielding a resultant CMB plus Bianchi map
(panel c) to which a mask, beam and noise are applied (the Bianchi com-
ponent is rotated such that the majority of its structure does not lie in the
masked region). A noisy mask (panel d) is added to the CMB plus Bianchi
map and the partial-sky Bayesian analysis described in Sec. 3.3 is applied
to recover a MAP estimated Bianchi component (panel e). The recovered
Bianchi component (panel e) accurately estimates the embedded compo-
nent (panel b).

are shown in Fig. 5. Both cosmological and Bianchi VIIh parame-
ters are estimated reasonably accurately, however since less data is
now available due to the lower `max and masking, the marginalised
posterior distributions are not as well constrained as the full-sky
setting, as is to be expected.7

Reducing the maximum multipole considered has a large im-
pact on the ΛCDM parameters determined by the acoustic peak
positions and heights, but, thanks to the effective low-` band-limit
of the Bianchi VIIh signal, affects the Bianchi VIIh parameters
much more mildly. This is clearly evident from the comparative
behaviour of the posteriors for (ω/H)0 and, e.g., Ωch2 or Ωbh2. For
model comparison purposes, this does not therefore pose any great
concern. Indeed, for this simulation the model including a Bianchi
component is also favoured conclusively with a log-Bayes factor
of ∆lnE ∼ 50. Nevertheless, by reducing `max we clearly discard
a great deal of cosmologically interesting information. This can be
recovered by calculating a high-` likelihood assuming the Bianchi
VIIh contribution is zero for ` > `max, using a conjugate-gradient-
based implementation (Smith et al. 2007; Bennett et al. 2012) of
the optimal, unbiased power-spectrum estimator (Tegmark 1997)
in the presence of a mask. The two likelihoods can then be multi-
plied, assuming that the high- and low-` data are independent. The
implementation of such an algorithm for the simulations used here
is unnecessary, as they are intended solely to validate the ANICOSMO
code. When considering the WMAP data, we will use the purpose-
built WMAP likelihood code8 (Bennett et al. 2012), which imple-
ments the scheme described above, to calculate the high-` likeli-
hood and hence maximise the impact of the WMAP data.

The rationale for the simulations performed here is to vali-
date the implementation of the ANICOSMO code, which has been
demonstrated effectively in both the full- and partial-sky settings.
Furthermore, although the details are not presented here, additional
simulations were performed to validate the partial-sky setting. Two
CMB maps were simulated with different cosmologies. A single
hybrid map was then constructed with the Northern hemisphere
given by the CMB simulated from the first cosmology and with
the Southern hemisphere given by the CMB simulated from the
second cosmology. ANICOSMO was applied to recover cosmologi-
cal parameters from this hybrid map, once masking the Northern
hemisphere and once masking the Southern hemisphere. In each
of these tests the correct cosmology of the unmasked hemisphere
was recovered, demonstrating that the partial-sky Bayesian analy-
sis outlined in Sec. 3.3 effectively marginalises the masked pixels
of the data. This test and the simulations described previously pro-
vide a strong validation of the ANICOSMO code in both the full- and
partial-sky settings.

4 ANALYSIS OF WMAP OBSERVATIONS

We analyse WMAP 9-year data for evidence of Bianchi VIIh cos-
mologies, performing both the full- and partial-sky Bayesian anal-
yses described in the preceding section. Firstly, we describe the

7 Notice that the optical depth τ appears to be better constrained in the
partial-sky setting than in the full-sky setting. This is most likely a chance
result for the particular simulations considered and is not expected to hold
in general. Indeed, when considering the WMAP data (with the same `max)
the recovered posterior distributions for the optical depth are very similar
(see Fig. 7 and Fig. 8).
8 Available for download from http://lambda.gsfc.nasa.gov/

product/map/dr5/likelihood_get.cfm.
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specific full- and partial-sky WMAP data used and the cosmologi-
cal models considered. We then present the results of our Bayesian
analysis of Bianchi VIIh models and place robust constraints on the
vorticity of the Universe.

4.1 Data

Previous searches for Bianchi VIIh components embedded in
WMAP data (e.g. Bridges et al. 2007) used full-sky data in the
form of the ILC map to estimate the parameters of the Bianchi
VIIh model. While this greatly simplifies the form of the covari-
ance matrix employed in the likelihood, the ILC map was not rec-
ommended for cosmological analysis (Eriksen et al. 2004) as it
contains considerable foreground residuals, especially within the
Galactic plane, and has a complex pixel noise structure. While these
effects were ignored in previous studies (e.g. Bridges et al. 2007)
since they are sub-dominant on the large scales of interest when
studying Bianchi models, a better approach is to analyse partial-
sky observations of individual WMAP frequency bands.

Our formalism, presented in Sec. 3.3, allows partial-sky data
to be analysed for the first time in a statistically rigorous manner,
minimising the residual contamination in the data and ensuring our
conclusions are robust. We analyse the foreground-reduced WMAP
9-year W-band map (Bennett et al. 2012), masked with the conser-
vative 9-year KQ75 sky cut (Bennett et al. 2012) to excise residual
contamination. We select W-band data since this band, along with
the V-band (which has lower resolution), suffers from the least fore-
ground contamination (Bennett et al. 2012). The resulting data are
shown in Fig. 6(a). In order to draw comparisons with previous
studies we also analyse the full-sky WMAP 9-year ILC map (Ben-
nett et al. 2012) shown in Fig. 6(b), under the proviso that any cos-
mological conclusions drawn from the ILC analysis must be treated
with care.

Since Bianchi models have a low harmonic band-limit (see
Fig. 1 of McEwen et al. 2006), we use only low-` WMAP data
in computing the Bianchi likelihood defined by Eqn. (4); specifi-
cally, we compute contributions to the likelihood of Eqn. (4) for
` 6 `B

max = 32. For the partial-sky setting, where a non-diagonal co-
variance matrix must be inverted for each likelihood evaluation, a
low band-limit `B

max is also convenient to reduce the computational
cost of the analysis. The WMAP data so far described (the ILC map
or the KQ75-masked W-band map in the full- and partial-sky set-
tings respectively) are used for the Bianchi likelihood evaluation.
As mentioned previously, we augment the low-` Bianchi likelihood
with the standard high-` WMAP likelihood (Bennett et al. 2012)
for ` > `B

max = 32; this likelihood function makes use of all WMAP
temperature observations, as well as accurate beam models. The
final log-likelihood is thus the sum of the low-` Bianchi and high-
` 9-year WMAP log-likelihood contributions (since the low- and
high-` data are essentially independent, the log-likelihood contri-
butions can effectively by summed). As highlighted in Sec. 3.4, by
including the high-` WMAP likelihood we are able to constrain
cosmological parameters to greater precision.

We incorporate approximate WMAP noise and beam effects
in the low-` Bianchi likelihood. Since the Bianchi likelihood is
specified in harmonic space (due to the efficiency and accuracy for
which Bianchi VIIh models can be handled in harmonic space),
we approximate the anisotropic WMAP noise by isotropic noise
(which may be handled easily in harmonic space due to its di-
agonal covariance structure). We assume isotropic white noise
specified by its power spectrum N` = 0.015 (µK)2 (computed by
N` = Ωpixσ

2
0/median(Nobs), where Nobs is the W-band observation-

(a) Foreground-reduced W-band map with KQ75 mask applied

(b) ILC map

Figure 6. WMAP 9-year data analysed.

count map and σ0 = 6544 µK is the W-band pixel noise level) and
a Gaussian beam with FWHM of 13.2′ in order to approximate
W-band observations accurately. As the individual WMAP bands
are smoothed to a common resolution of 1◦ when creating the ILC
(Bennett et al. 2012), we substitute a Gaussian beam of FWHM
1◦ when considering ILC data. Since we restrict to low-` data for
the Bianchi likelihood (` 6 `B

max = 32), where WMAP noise and
beam effects are sub-dominant, these approximations are accurate.
For the high-` contribution to the likelihood, the official WMAP 9-
year likelihood is used, where noise and beams are modelled very
accurately.

4.2 Models

We consider three scenarios in this study: one physically motivated,
and two phenomenological but motivated by previous analyses.

In the first (and only physically motivated) scenario, the
Bianchi and cosmological parameters are coupled; i.e. the matter
and dark-energy densities of the Bianchi and standard cosmologi-
cal models are shared and thus identical. Since Bianchi VIIh models
are open (with flat models as the limiting case) we label this model
the open-coupled-Bianchi model. When quoting final conclusions
about Bianchi VIIh cosmologies we will refer to this model since it
is a physically well-motivated and consistent model.

It is also interesting to consider Bianchi CMB contributions
arising from phenomenological models in which the Bianchi pa-
rameters are decoupled from the standard cosmological parame-
ters; indeed, it is necessary to do so in order to compare to existing
results, as this is the only approach employed in all previous anal-
yses. In this non-physical scenario we consider a standard ΛCDM
cosmology and a Bianchi VIIh component with decoupled param-
eters (i.e. the total energy density of the standard cosmology and
Bianchi cosmology may differ and are effectively separate param-
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Table 1. The prior ranges used for the ΛCDM and Bianchi VIIh parameters.

Parameter Prior Range

As [1, 5] × 10−9

ns [0.8, 1.1]
τ [0.082, 0.092]
Ωbh2 [0.005, 0.05]
Ωch2 [0.05, 0.3]
ΩΛ [0.5, 0.9]
Ωk [0.001, 0.2]

x [0.01, 1]
(ω/H)0 [0, 1] × 10−10

α [0, 360]◦

β [0, 180]◦

γ [0, 360]◦

ΩB
m [0, 0.99]

ΩB
Λ

[0, 0.99]

eters). As the ΛCDM cosmologies considered in previous analyses
(e.g. Jaffe et al. 2005; Bridges et al. 2007) were flat, we similarly re-
strict our attention to flat ΛCDM components, and label this model
the flat-decoupled-Bianchi model. Note that in this model we allow
all ΛCDM parameters to vary.

Finally, we also consider the situation where the majority of
the cosmological parameters are fixed and are not fitted simultane-
ously with the Bianchi VIIh parameters. Following Bridges et al.
(2007), we do allow the amplitude of the primordial power spec-
trum, As, to vary in this model, so that the amplitude of standard
stochastic CMB temperature fluctuations is allowed to vary as we
fit for an embedded Bianchi component. The remaining cosmolog-
ical parameters are fixed at their values as constrained by WMAP
9-year observations, baryon acoustic oscillations and supernovae
observations (Hinshaw et al. 2012). This is again a decoupled, non-
physical scenario, and we label this model the fixed-decoupled-
Bianchi model, where ‘fixed’ indicates that the standard cosmo-
logical parameters are essentially fixed.

For each of the three models discussed above, we consider
models where a Bianchi VIIh component is, and is not, included.
Moreover, for the case where a Bianchi component is included,
we consider both left-handed (LH) and right-handed (RH) Bianchi
models, since the handedness of the coordinate system is also free
in Bianchi VIIh models. Consequently, we recover nine different
models that we analyse (six models that include a Bianchi compo-
nent and three that do not).

The prior ranges adopted on the ΛCDM and Bianchi parame-
ters in this analysis are shown in Table 1, and are chosen conserva-
tively to reflect our weak prior knowledge of the Bianchi models.
The priors are uniform in all parameters of interest apart from the
prior on the power spectrum amplitude, As, which is uniform in
log As, and the prior on the Euler angle β, which is uniform in sin
β. The priors on the Bianchi densities, ΩB

m and ΩB
Λ

, are applied only
in the decoupled models; in the coupled model these parameters are
set by the sampled ΛCDM densities according to ΩB

m = Ωb + Ωc

and ΩB
Λ

= ΩΛ.

4.3 Results

We use WMAP 9-year data, as specified in Sec. 4.1, to study the
Bianchi VIIh models described in Sec. 4.2, using both the full- and
partial-sky Bayesian analysis techniques presented in Sec. 3. We
first consider the Bayes factors computed for different models, be-

Table 2. Log-Bayes factors computed for different models. The Bayes
factor for each model is computed relative to the corresponding model
that does not include a Bianchi component, where a positive Bayes factor
favours the model that does include a Bianchi component.

Model Full-sky ILC Masked W-band

Open-coupled-Bianchi (LH) -0.3 ± 0.2 0.0 ± 0.2
Open-coupled-Bianchi (RH) -0.3 ± 0.2 0.1 ± 0.2
Flat-decoupled-Bianchi (LH) 1.1 ± 0.2 0.1 ± 0.2
Flat-decoupled-Bianchi (RH) 0.1 ± 0.2 0.1 ± 0.2
Fixed-decoupled-Bianchi (LH) 1.7 ± 0.1 0.6 ± 0.1
Fixed-decoupled-Bianchi (RH) 0.6 ± 0.1 0.3 ± 0.1

fore studying parameter estimates, best-fit maps, and finally vortic-
ity bounds.

4.3.1 Bayesian evidence

The log-Bayes factors computed for the different models consid-
ered are shown in Table 2. Neither left- nor right-handed open-
coupled-Bianchi models are favoured by WMAP 9-year data, for
either full-sky ILC data or partial-sky W-band data. Since this is
the only physical model studied, we may already conclude that
WMAP data do not favour a Bianchi VIIh cosmology over the stan-
dard ΛCDM cosmology.

Nevertheless, we consider the other phenomenological mod-
els discussed in Sec. 4.2 where the Bianchi parameters are de-
coupled from the standard cosmological parameters, since these
are the models that have been studied in previous analyses. For
both the left-handed, flat-decoupled-Bianchi and fixed-decoupled-
Bianchi models, we find evidence in favour of a Bianchi compo-
nent (classified as significant on the Jeffreys scale), when analysing
full-sky ILC data. However, when analysing masked W-band data
we find no evidence for these models, suggesting that the evidence
found in the full-sky setting is driven predominantly by ILC data
near the Galactic plane. No evidence is found for the correspond-
ing right-hand models.

4.3.2 Parameter estimates

Although only left-handed, decoupled-Bianchi models show evi-
dence for a Bianchi component when analysing full-sky ILC data,
for completeness we show posterior distributions of the parameters
of all left-handed models, using both full-sky ILC data and masked
W-band data. We focus on left-handed models since neither dataset
shows evidence for any right-handed models.

The posterior distributions of the parameters of the open-
coupled-Bianchi model are shown in Fig. 7 for full- and partial-
sky data. The standard cosmological parameters are relatively well
constrained thanks to the high-` WMAP likelihood (except for the
optical depth to reionisation, τ, as expected as only CMB temper-
ature data are used). Since the constraints on the standard cosmo-
logical parameters are driven largely by the high-` WMAP likeli-
hood and are similar for all models, we do not comment on these
further when discussing subsequent models. The Bianchi parame-
ters, however, are typically poorly constrained for this model, es-
pecially for partial-sky W-band data. Furthermore, the Bianchi vor-
ticity (ω/H)0, which traces the amplitude of the Bianchi-induced
CMB temperature fluctuations, is peaked near zero. These poste-
rior plots agree with the conclusion from the Bayesian evidence
that WMAP 9-year data do not favour Bianchi VIIh cosmologies.
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Figure 7. Posterior distributions for parameters of the left-handed open-coupled-Bianchi model computed from full-sky ILC data (solid blue curves) and
KQ75-masked W-band data (dashed red curves).

The posterior distributions of the parameters of the flat-
decoupled-Bianchi model are shown in Fig. 8 for full- and partial-
sky data. For the full-sky analysis, the Bianchi parameters are rela-
tively well-constrained (except for ΩB

Λ
due to the ΩB

m–ΩB
Λ

degener-
acy of Bianchi VIIh models), agreeing with the previous inference
from the Bayesian evidence that a Bianchi component is favoured
in this setting. Bianchi parameters are not well constrained for
partial-sky data and, moreover, the Bianchi vorticity (ω/H)0 is
peaked near zero, agreeing with the conclusion that partial-sky data
do not favour a Bianchi component.

The posterior distributions of the parameters of the fixed-
decoupled-Bianchi model are shown in Fig. 9 for full- and partial-
sky data. The conclusions drawn from the posterior distributions
of the parameters of this model are identical to the flat-decoupled-
Bianchi model: essentially, the Bianchi parameters are well con-
strained when full-sky ILC data are used, but not when partial-sky

data are used. Again, these findings agree with conclusions drawn
previously using the Bayesian evidence.

Finally, we summarise the parameter estimates made from the
joint posterior distribution P(Θ | d,M) for each model in Table 3
and Table 4, for partial- and full-sky data respectively. We compute
both maximum a-posteriori (MAP) parameter estimates from the
peak of the joint posterior distribution and estimates from the mean
of the marginalised posterior distribution for each parameter. One-
standard-deviation errors are also quoted for the mean-posterior pa-
rameter estimates.

4.3.3 Best-fit maps

For the two models where the Bayes factor provides significant evi-
dence in support of a Bianchi component (see Table 2), namely the
non-physical flat-decoupled-Bianchi and fixed-decoupled-Bianchi
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Figure 8. Posterior distributions for parameters of the left-handed flat-decoupled-Bianchi model computed from full-sky ILC data (solid blue curves) and
KQ75-masked W-band data (dashed red curves).

models, we plot the best-fit embedded Bianchi maps in Fig. 10(a)
and Fig. 10(b), respectively. Best-fit maps are computed from the
MAP parameter estimates contained in Table 3. These best-fit maps
are very similar to those found in previous releases of WMAP data
(Jaffe et al. 2005; Bridges et al. 2007).

4.3.4 Vorticity bounds

We conclude our analysis of WMAP 9-year data by reiterating that
only the open-coupled-Bianchi model is physical. The other mod-
els considered are non-physical since the Bianchi parameters are
decoupled from the standard cosmological parameters: the Bianchi
component can therefore require parameters, for example, a total
energy density, that are incompatible with the stochastic CMB com-
ponent. For the physical open-coupled-Bianchi model no evidence
for a Bianchi component is found in either full-sky ILC or partial-

sky W-band data. In this physical model we can therefore place
constraints on the vorticity of Bianchi VIIh cosmologies. For full-
sky ILC data we recover the constraint (ω/H)0 < 8.1×10−10 at 95%
confidence, for both left- and right-handed models. For partial-sky
W-band data we recover the constraint (ω/H)0 < 8.1×10−10 for the
left-handed model and the constraint (ω/H)0 < 8.6 × 10−10 for the
right-handed model, both at 95% confidence. These constraints on
the global anisotropy of our Universe are placed in the context of a
well-motivated, physical model, namely Bianchi VIIh cosmologies,
using robust Bayesian statistical methods.

5 CONCLUSIONS

We have performed a definitive analysis of Bianchi VIIh cosmolo-
gies with WMAP 9-year temperature data. We have studied full-sky
ILC data and masked W-band data, using Bayesian analysis tech-
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Figure 9. Posterior distributions for parameters of the left-handed fixed-decoupled-Bianchi model computed from full-sky ILC data (solid blue curves) and
KQ75-masked W-band data (dashed red curves).

Table 3. Parameter estimates recovered for various left-handed models from full-sky ILC data. Note that some of these models are not favoured by the Bayesian
evidence and some parameters are not well constrained. We nevertheless show all parameter estimates for completeness.

Parameter Open-coupled-Bianchi Flat-decoupled-Bianchi Fixed-decoupled-Bianchi
MAP Mean MAP Mean MAP Mean

As 2.21 × 10−9 (2.19 ± 0.03) × 10−9 2.17 × 10−9 (2.19 ± 0.04) × 10−9 2.219 × 10−9 (2.217 ± 0.009) × 10−9

ns 0.98 0.98 ± 0.01 0.98 0.98 ± 0.01 — —
τ 0.084 0.087 ± 0.003 0.084 0.087 ± 0.003 — —

Ωbh2 0.023 0.0226 ± 0.0004 0.023 0.0225 ± 0.0004 — —
Ωch2 0.12 0.112 ± 0.004 0.11 0.112 ± 0.004 — —
ΩΛ 0.72 0.75 ± 0.03 0.74 0.73 ± 0.02 — —
Ωk 0.002 0.007 ± 0.005 — — — —
ΩB

m 0.27 0.24 ± 0.03 0.3 0.3 ± 0.2 0.4 0.3 ± 0.1
ΩB

Λ
0.72 0.75 ± 0.03 0.3 0.3 ± 0.2 0.2 0.3 ± 0.2

x 0.3 0.4 ± 0.3 0.7 0.6 ± 0.2 0.6 0.6 ± 0.2
(ω/H)0 8 × 10−10 (3 ± 2) × 10−10 10 × 10−10 (6 ± 3) × 10−10 9 × 10−10 (6 ± 2) × 10−10

α 2.5◦ 181.8◦ ± 100.1◦ 41.3◦ 88.8◦ ± 90.0◦ 41.0◦ 71.2◦ ± 73.7◦

β 122.5◦ 87.9◦ ± 35.7◦ 27.2◦ 50.8◦ ± 36.4◦ 27.6◦ 43.6◦ ± 30.9◦

γ 242.5◦ 189.7◦ ± 100.9◦ 319.8◦ 259.9◦ ± 90.1◦ 314.1◦ 277.7◦ ± 75.6◦

Table 4. Parameter estimates recovered for various left-handed models from KQ75-masked W-band data. Note that these models are not favoured by the
Bayesian evidence and some parameters are not well constrained. We nevertheless show all parameter estimates for completeness.

Parameter Open-coupled-Bianchi Flat-decoupled-Bianchi Fixed-decoupled-Bianchi
MAP Mean MAP Mean MAP Mean

As 2.17 × 10−9 (2.18 ± 0.04) × 10−9 2.19 × 10−9 (2.18 ± 0.04) × 10−9 2.226 × 10−9 (2.217 ± 0.008) × 10−9

ns 0.98 0.99 ± 0.01 0.98 0.98 ± 0.01 — —
τ 0.084 0.087 ± 0.003 0.084 0.087 ± 0.003 — —

Ωbh2 0.023 0.0228 ± 0.0005 0.023 0.0227 ± 0.0004 — —
Ωch2 0.11 0.110 ± 0.004 0.11 0.111 ± 0.004 — —
ΩΛ 0.75 0.76 ± 0.03 0.73 0.74 ± 0.02 — —
Ωk 0.003 0.007 ± 0.005 — — — —
ΩB

m 0.25 0.23 ± 0.03 0.3 0.3 ± 0.2 0.1 0.3 ± 0.2
ΩB

Λ
0.75 0.76 ± 0.03 0.4 0.3 ± 0.2 0.4 0.3 ± 0.2

x 0.5 0.3 ± 0.3 0.7 0.4 ± 0.3 0.2 0.5 ± 0.3
(ω/H)0 6 × 10−10 (3 ± 3) × 10−10 8 × 10−10 (4 ± 3) × 10−10 4 × 10−10 (4 ± 3) × 10−10

α 55.6◦ 179.0◦ ± 101.0◦ 37.0◦ 162.8◦ ± 104.3◦ 244.0◦ 150.2◦ ± 102.5◦

β 59.3◦ 90.6◦ ± 38.3◦ 26.4◦ 82.1◦ ± 39.6◦ 106.9◦ 75.3◦ ± 39.0◦

γ 102.6◦ 180.5◦ ± 100.3◦ 321.0◦ 193.2◦ ± 103.8◦ 170.3◦ 203.8◦ ± 100.3◦
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(a) Flat-decoupled-Bianchi model (b) Fixed-decoupled-Bianchi model

Figure 10. Best-fit non-physical Bianchi VIIh templates found in full-sky ILC data.

niques developed for the full- and partial-sky settings. Three dif-
ferent models were studied, namely the physically motivated open-
coupled-Bianchi model, where the Bianchi and standard cosmo-
logical parameters are coupled, and the flat-decoupled-Bianchi and
fixed-decoupled-Bianchi models, which are non-physical since the
Bianchi and standard cosmological parameters are decoupled. Al-
though we have focused here on Bianchi models, our analysis tech-
niques may be easily extended to study other anisotropic cosmolo-
gies such as non-trivial topologies; such models will be the focus
of future research.

For the non-physical decoupled models, we find Bayesian ev-
idence favouring the inclusion of a left-handed Bianchi component
when analysing full-sky ILC data. The resulting best-fit Bianchi
maps found in WMAP 9-year data are similar to those found in
previous releases of WMAP data (Jaffe et al. 2005; Bridges et al.
2007). However, when studying these models with masked W-band
data we find no evidence for a Bianchi component, suggesting that
data near the Galactic plane provide a large contribution to the evi-
dence found in the full-sky setting.

For the physical Bianchi VIIh model, we find no evidence
for the inclusion of a Bianchi component in either full- or partial-
sky WMAP data. Since this is a well-motivated, physical model
we can state definitively that WMAP data do not favour Bianchi
VIIh cosmologies over ΛCDM. However, neither is it possible
to conclusively discount Bianchi VIIh cosmologies in favour of
ΛCDM cosmologies. We constrain the vorticity of Bianchi VIIh

cosmologies, and hence the large-scale anisotropy of the universe,
at (ω/H)0 < 8.6 × 10−10 with 95% confidence.

Bianchi VIIh cosmologies induce a global anisotropic CMB
temperature contribution that is inherently low-resolution, so the
higher resolution of forthcoming Planck (Planck collaboration
2005) data as compared to WMAP is not in itself relevant to en-
hanced constraints on these models. However, Planck’s ability to
remove large-scale astrophysical foregrounds will result in CMB
observations of unprecedented precision over almost the entire sky.
An analysis of Bianchi VIIh cosmologies using Planck temperature
data will thus be very informative. Moreover, polarised Planck ob-
servations will also have the potential to further constrain Bianchi
VIIh cosmologies.
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Górski K.M., Hivon E., Banday A.J., Wandelt B.D., Hansen F.K.,
Reinecke M., Bartelmann M., 2005, Astrophys. J., 622, 759,
astro-ph/0409513

Hinshaw G., et al., 2003, Astrophys. J. Supp., 148, 135,
arXiv:astro-ph/0302217

Hinshaw G., et al., 2012, ArXiv e-prints, 1212.5226
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