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Sparse image reconstruction on the sphere:
a general approach with uncertainty quantification
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Abstract—Inverse problems defined naturally on the sphere
are becoming increasingly of interest. In this article we provide
a general framework for evaluation of inverse problems on the
sphere, with a strong emphasis on flexibility and scalability.
We consider flexibility with respect to the prior selection (regu-
larization), the problem definition — specifically the problem
formulation (constrained/unconstrained) and problem setting
(analysis/synthesis) — and optimization adopted to solve the
problem. We discuss and quantify the trade-offs between problem
formulation and setting. Crucially, we consider the Bayesian
interpretation of the unconstrained problem which, combined
with recent developments in probability density theory, permits
rapid, statistically principled uncertainty quantification (UQ)
in the spherical setting. Linearity is exploited to significantly
increase the computational efficiency of such UQ techniques,
which in some cases are shown to permit analytic solutions.
We showcase this reconstruction framework and UQ techniques
on a variety of spherical inverse problems. The code discussed
throughout is provided under a GNU general public license, in
both C++ and Python.

Index Terms—harmonic analysis, sampling, spheres, spherical
wavelets, uncertainty quantification

I. INTRODUCTION

INCREASINGLY often one wishes to solve inverse prob-
lems natively on the sphere (S2) rather than on n dimen-

sional Euclidean space (Rn), e.g. in astronomy and astro-
physics [1]–[4], biomedical imaging [5]–[7], and geophysics
[8]. Straightforwardly from Gauss’ Theorema Egregium —
which states that the curvature of surfaces embedded in R3

is immutable, and thus planar projections of curved manifolds
(e.g. the sphere) inherently incur (significant) distortions —
analysis over such domains must necessarily be conducted
natively on the sphere. Though many Euclidean techniques
may provide inspiration for counter-parts on the sphere, there
are a still a great many critical differences between these
paradigms which must be considered. Typically, inverse prob-
lems of interest, particularly on the sphere, are (often severely)
ill-posed and/or ill-conditioned, motivating the injection of
prior knowledge to stabilize the reconstruction. Such problems
can be solved in a variety of ways (e.g. sampling methods
and machine learning methods) though, for robustness and
scalability, in the spherical setting variational methods (e.g.
optimization) are the most effective.

Due to recent advances in the theory of compressed sensing
[9]–[11] sparsity priors (e.g. `1-regularization) are now rou-
tinely adopted, where the solution to an inverse problem can
be constrained and found by promoting sparsity in a dictionary,
such as wavelets or gradient space (variational norms). Recent
developments in proximal convex optimization algorithms

facilitate the practical application of non-differentiable priors,
where they can be distributed and scale to high dimensional
parameter spaces [12], [13]. The spherical counterparts for
discrete gradient spaces [14], wavelet families [15]–[21], and
scale-discretised wavelet families [19]–[23] have been de-
veloped, and have found wide applications — see previous
papers in this series [14], [24] for a more comprehensive
overview on this topic. Somewhat restricted investigations of
some aspects have already been conducted, e.g. considering
sparsity in spherical harmonic space [25], sparsity in various
redundant dictionaries [14], [24], [26].

Variational inference techniques to solve inverse problems
may be constructed in either the analysis or synthesis setting
where signal coefficients or coefficients of a sparse represen-
tation are recovered respectively [27]. For Euclidean settings
the analysis problem typically provides greater reconstruction
fidelity; a characteristic often attributed to the lower cardinality
of the analysis solution space [27]–[29], however comparisons
between the analysis and synthesis settings on the sphere are
not so clear, due to the approximate effective cardinality of
different spaces on the sphere [24]. There also exists a more
fundamental sub-classification of optimization problems into
two classes: constrained and unconstrained, which correspond
to regularization via hard and soft constraints respectively
[30], [31]. Hard constraints (constrained formulation) do not
depend on variables such as Lagrangian multipliers, the op-
timal selection of which is an open problem, and instead
constrain the solution to a certain sub-space. Soft constraints
(unconstrained formulation) can be considered as Bayesian
inference problems [32], [33] and thus support a principled
statistical interpretation [1], [34]–[36].

Traditionally, although variational approaches may support
a probabilistic interpretation they typically recover point es-
timates and do not quantify uncertainties. Fully probabilis-
tic approaches (e.g. Markov chain Monte Carlo sampling
methods) exist but are computationally expensive in the high
dimensional setting of the sphere, motivating the development
of hybrid techniques. Recent developments in the field of prob-
ability density theory [35] address precisely this consideration,
facilitating flexible generation of scalable, fully principled
Bayesian uncertainty quantification (UQ) techniques for varia-
tional approaches. Many such techniques have been developed
[36]–[40], with applications in a variety of domains. In this
article, we leverage these UQ techniques to recover Bayesian
local credible intervals, in effect pixel-level error bars, and
other forms of hypothesis tests on discrete spherical spaces.
Interestingly we show how these uncertainties for a variety of
common objectives can be computed rapidly (by exploiting



IEEE TRANSACTIONS ON IMAGE PROCESSING 2

linearity) and in some cases analytically. Such computational
savings are a key component for the future of scalable UQ for
spherical inverse problems. Looking forward one might note
that these UQ techniques for variational imaging rely only on
log-concavity of the posterior (convexity of the objective), as
such a great many combinations of likelihood (data-fidelity)
and prior (regularization functionals) are permissible.

In the spirit of open access software and scientific re-
producibility the spherical reconstruction software (S2INV)
developed during this project is made publicly available.1

S2INV is an object oriented C++ software package (with
python extensions) which acts as a spherical extension to the
SOPT [13], [41], [42] software package for flexible, efficient
sparse optimization. We use fast exact spherical harmonic [43]
and spherical wavelet transforms [20] to rapidly solve linear
and ill-conditioned spherical inverse problems. The aim of
S2INV is to increase accessibility of spherical sparse signal
reconstruction to the wider community.

The remainder of this article is structured as follows. In
Section II we provide the mathematical context which un-
derpins analysis of spin signals on both the sphere and the
rotation group, and provide a summary of spherical wavelets
adopted throughout. In Section III we present variational
regularization approaches to solve spherical inverse problems
and consider the unconstrained and constrained formulations,
in both the analysis and synthesis settings. Furthermore, we
discuss the generalization of planar regularization functionals
to their spherical counterparts, and briefly highlight highly
optimized, scalable spherical reconstruction open-source soft-
ware available as a bi-product of this work. In Section IV we
develop principled Bayesian uncertainty quantification tech-
niques which can be leveraged for spherical inverse problems,
and present acceleration methods exploiting function linearity
and/or objective analytic solutions. A diverse selection of
numerical experiments are presented in Section V before
providing concluding remarks in Section VI.

II. SPIN-SIGNALS ON THE SPHERE AND ROTATION GROUP

In many aspects of image processing, one often wishes to
consider the frequency space representation of signals; whether
this be embedded within regularization methods, necessary to
fully capture a desired forward model, or simply adopted to
exploit computational symmetries (e.g. fast convolution algo-
rithms). In the Euclidean setting, the frequency information of
a signal is efficiently expressed through projection onto Fourier
space, the Fourier transform.

For spherical settings frequency information is expressed
though projection onto the space of spherical harmonics, with
additional modifications should the signal under consideration
exhibit non-zero integer spin — which arises quite naturally
in a variety of scientific domains. In this section we review
mathematical background fundamental to the analysis of sig-
nals defined on the sphere, including harmonic and wavelet
representations.

1https://github.com/astro-informatics/s2inv

A. Spin spherical harmonic transforms

The space of square integrable spin-s functions sf ∈ L2[S2],
for s ∈ Z, with inner product 〈·|·〉S2 , are defined by their
response under local rotations of χ ∈ [0, 2π) about the
tangent plane centered on the spherical co-ordinate ω =
(θ, ψ) ∈ S2, given by sf

′(ω) = e−isχsf(ω) where sf
′ is

the rotated function [14], [24], [44], [45]. Such functions
are most naturally represented by the spin-weighted spherical
harmonics sY`m ∈ L2[S2] which are a set of complete and
orthogonal basis functions for degree ` ∈ Z+ and integer
m ∈ Z, |m| ≤ `, |s| ≤ `. We adopt the Condon-Shortley
phase convention [46], which results in conjugate symmetry
sY

?
`m(ω) = (−1)s+m−sY`−m(ω), where (·)? denotes complex

conjugation.
It is informative to consider the spin raising and lowering

operators (ð+ and ð− respectively) defined by [44], [45]

ð± = − sin±s θ
( ∂
∂θ
± i∂

sin θ∂ψ

)
sin∓s θ, (1)

which have the action of raising/lowering the spin of a
given spin spherical eigenfunction sY`m with corresponding
recursion relations [44]–[46]

ð± sY`m(ω) = ±
[
(`∓ s)(`± s+ 1)

]1/2
s±1Y`m(ω). (2)

Considering these recursions one may represent any spin-s
spherical eigenfunction as a recursive function of the base
(spin-0) spherical harmonic eigenfunction Y`m. Explicitly this
relation is given by

sY`m(ω) =


[

(`−s)!
(`+s)!

] 1
2 ðs+Y`m(ω), for s ∈ (0, `],

(−1)s
[

(`+s)!
(`−s)!

] 1
2 ð−s− Y`m(ω), for s ∈ [−`, 0].

(3)
A spin-s function sf ∈ L2[S2] may be decomposed into the

spin spherical harmonic basis by

sf`m ≡ 〈sf`m|sY`m〉S2 =

∫
S2

dΩ(ω) sf(ω) sY
∗
`m(ω), (4)

where dΩ(ω) = sin(θ)dθdψ is the standard rotation invariant
measure (Haar measure) on the sphere. Equivalently, noting
the completeness and orthogonality of the spin-s spherical
harmonic basis, one may invert this to exactly synthesize the
signal space representation by

sf(ω) =

∞∑
`=0

∑̀
m=−`

sf`m sY`m(ω), (5)

where the sum over ` is often truncated at L, where it is
assumed that sf`m = 0,∀` ≥ L. In this sense, signals are
considered to be bandlimited at L. For notation brevity we
adopt the shorthand operator notation Y and Y−1 to denote
the forward and inverse spherical harmonic transforms.

Effectively this transformation allows one to probe the
frequency content of spin signals defined on the sphere, which
facilitates, e.g, efficient convolutions over spherical manifolds,
in much the same way one can compute convolutions over
R2 through the Fourier convolution theorem. In many cases
signals have 0 spin, and so these relations collapse to the

https://github.com/astro-informatics/s2inv
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simpler form most readers are likely familiar with. Never-
theless, a variety of interesting physical settings exist where
signals exhibit non-zero spin, e.g. the polarization of light,
weak gravitational lensing, the cosmic microwave background,
or quantum mechanical systems.

B. Scale-discretized directional spherical wavelets

Leveraging the above spin-s spherical harmonic basis, and
the associated convolutional properties, one can construct
wavelet dictionaries naturally on the sphere. To do so one
must first define a general rotation Rρ, for Euler angles
ρ = (α, β, γ) ∈ SO(3) with α ∈ [0, 2π), β ∈ [0, π), and
γ ∈ [0, 2π), with action (Rρsf)(ω) ≡ e−isθsf(R−1

ρ ω). The
directional scale-discretized wavelet coefficients of any square
integrable spin-s function sf ∈ L2[S2] are given for scale j
by the directional convolution

W sΨ
(j)

(ρ) ≡ (sf ~ sΨ
(j))(ρ) ≡ 〈sf,RρsΨ(j)〉S2

=

∫
S2

dΩ(ω)sf(ω)(RρsΨ(j))?(ω), (6)

where ~ represents the directional spherical convolution and
sΨ

(j) ∈ L2[S2] is the wavelet kernel at scale j ∈ Z+, which
determines the compact support of a given wavelet scale [20].

Typically wavelet coefficients have negligible energy con-
centration over the low-frequency domain in harmonic space,
hence a scaling function sΥ ∈ L2[S2] is introduced [6], [22]
with coefficients W sΥ ∈ L2[S2] defined by the axisymmetric
convolution � with a signal sf ∈ L2[S2] such that

W sΥ(ω) ≡ (sf � sΥ)(ω) ≡ 〈sf,RωsΥ〉S2

=

∫
S2

dΩ(ω′)sf(ω′)(RωsΥ)?(ω′) , (7)

where Rω = R(ψ,θ,0) is a simplification of Rρ. One can
straightforwardly show that [22] the pixel-space representation
of signals may be synthesized by

sf(ω) =

∫
S2

dΩ(ω′)W sΥ(ω′)(Rω′sΥ)(ω)

+
∑
j

∫
SO(3)

dρ(ρ)W sΨ
(j)

(ρ)(RρsΨ(j))(ω), (8)

which is exact if, and only if, the wavelet admissibility
condition holds (see e.g. [22]). There exist many functions
which are admissible, e.g. spherical needlets [18], ridgelets
[6] and curvelets [47], however in this work we choose adopt
the directional scale-discretized wavelet harmonic space kernel
[19], [23], For notational brevity we can now finally define
operators Ψ and Ψ−1 for the synthesis and analysis wavelet
transforms respectively, with corresponding adjoints operators
Ψ† and (Ψ−1)† (for further details see, e.g., [24]). These
operators are adopted throughout the remainder of this article.

III. GENERALIZED SPHERICAL IMAGING

Imaging inverse problems are found in countless areas of
both science and industry; consequently a great wealth of
effort has been spent developing signal processing, Bayesian
inference and, more recently, machine learning techniques

for solving such problems. However, these techniques have
overwhelmingly been restricted to Euclidean settings, in large
part due to their prevelance and relative simplicity.

As such, planar imaging benefits greatly from the flexibility
such a dictionary of techniques affords, whereas techniques
developed for non-Euclidean manifolds (e.g. the sphere) are
comparatively rare. One might reasonably consider apply-
ing planar techniques to spherical settings, e.g. through the
analysis of planar projections, however these fundamentally
fall short [2] as a result of Gauss’ Theorema Egregium
— a core concept of differential geometry, which dictates
that one may not flatten a ball without incurring significant
distortions. Nonetheless, one can certainly consider the de-
velopment of analogous techniques defined natively on the
sphere. Previously, the spherical total variation TV-norm was
constructed [14], and the analysis and synthesis settings were
compared in a spherical setting [24]. In this section we extend
the discussion to include the constrained and unconstrained
formulations, supported by a variety of proximal optimization
algorithms, and a variety of regularization functionals. This
discussion then leads naturally into the development of state-
of-the-art uncertainty quantification techniques for variational
approaches on the sphere in Section IV.

On the sphere the setup of such imaging problems is as
follows: consider the case in which one acquires complex
measurements y ∈ CM , which may or may not be natively on
the sphere, but can be related to an estimated or true spherical
signal x ∈ CNS2 through the linear mapping

Φ ∈ CM×NS2 : x ∈ CNS2 7→ y ∈ CM , (9)

commonly referred to as the measurement operator, which
simulates measurement acquisition. Suppose observations are
contaminated with stochastic noise n ∈ CM such that y =
Φx+n which is classically ill-posed [48], [49]. Furthermore,
when one considers that spherical observations are often
incomplete, i.e. |M | � |NS2 |, such problem instances quickly
become (seriously) ill-conditioned.

A wide set of techniques exist to solve such inverse
problems. This article is primarily concerned with variational
approaches, for which we develop uncertainty quantification
techniques in Section IV. Variational approaches typically
consider the inverse problem as a minimization problem over a
chosen objective function, which is typically the combination
of a data fidelity term and a regularization term — selected
to stabilize reconstruction with a priori assumptions as to the
nature of the problem instance. Given an objective function
over which to minimize, one must make a variety of nuanced
decisions regarding optimization formulation.

A. Constrained and unconstrained optimization
Suppose one selects data-fidelity term f(x) and regular-

ization functional g(x), then the unconstrained optimization
problem has the Lagrangian formulation [30], [31]

x? = argmin
x∈Ω

{
f(x) + λg(x)

}
, (10)

where Ω = {CNS2 , RNS2 , RNS2
+ }, and the regularization

parameter λ ∈ R+ is a Lagrangian multiplier that balances
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the relative contributions of the two functions to the objective.
In effect λ allows for a smooth re-weighting (soft constraint)
of the solution space instead of the strict boundary (hard
constraint) imposed in the constrained problem. In Section
IV it is shown that when one formulates the optimization in
the unconstrained setting, the solution which minimizes the
objective is in fact the maximum a posterioi (MAP) estimator
x? = xMAP.

Interestingly, it is well known that the unconstrained prob-
lem has direct links to Bayesian inference and supports a
principled statistical interpretation [33]. However, until re-
cently such Bayesian interpretations have been restricted to
point estimators and/or severely restricted objective functional
forms. One can leverage recent advances in probability con-
centration theory [35] to develop unconstrained optimization
techniques which support principled uncertainty quantification,
as discussed in Section IV. Therefore, when considering spher-
ical imaging problems, where Bayesian sampling methods are
impractical, in scientific domains, where uncertainty quan-
tification is a desirable feature, unconstrained optimization
exhibits significant advantages.

However, this advantage comes at the additional complexity
of optimal selection of the regularization parameter λ. Popular
methods for selection of λ have adopted criteria such as: the
Akaike information criterion (AIC) [50], Bayesian information
criterion (BIC) [51], or Stein’s unbiased risk estimator (SURE)
[52]–[54] and others [55]. Optimal regularization parameter
selection is still very much an open problem (for various
reasons including bias vs variance considerations). In this work
we adopt a recently developed hierarchical Bayesian inference
approach [56] which treats the regularization parameter as a
nuisance variable [32] over which a majorization-minimization
algorithm marginalizes. Effectively this method produces au-
tomatic, somewhat robust λ selection with a straightforward,
natural Bayesian interpretation, facilitating principled uncer-
tainty quantification. As this approach allocates a gamma-type
hyper-prior to λ it requires selection of two hyper-parameters
which, in some cases, the solution may be sensitive. However,
typically the solution is relatively insensitive to the choice of
hyper-prior.

Suppose instead that one is unwilling to accept a trade-
off in either the data-fidelity or regularization functional, i.e.
one requires that the data-fidelity is strictly below a given
threshold, or that solutions belong to a restrictive sub-space
of the regularization support or measurement operator. For
such inverse problems, the problem instance is formulated
as a constrained optimization problem, in which one function
is minimized subject to the constraint that the other function
belongs to some constrained set [30], [31]. Here we consider
the common form in which the regularization functional is
minimized subject to the constraint that the solution belongs
within a level-set of the data-fidelity term, i.e.

x? = argmin
x∈Ω

{
g(x)

}
s.t. f(x) ≤ δ, (11)

where δ is a specified threshold (defining an iso-contour or
level-set) of the data-fidelity term, typically determined by the
noise variance. This optimization restricts solutions to the sub-

space x ∈ Bδf where Bδf is the f -ball centered at z ∈ Ω with
radius δ, i.e. Bδf (z) := {x : f(x) ≤ δ}.

This formulation of the constrained problem requires cal-
ibration of δ which can be computed from the estimated
noise variance, and has a well defined interpretation. The
calibration of additional Lagrangian multipliers (regularization
parameters) is not required, hence the constrained setting is
typically more straightforward to adopt. For many problem
instances the constrained setting provides greater reconstruc-
tion fidelity, though this is likely to be problem dependent. In
this sense the soft constraint adopted by the unconstrained
setting (when selected appropriately) allows for bias to be
traded for variance (and vice versa) and thus in particularly
ill-posed problem instances, where the prior weighting is large
(i.e. high bias situations), may produce estimates that are more
accurate. Furthermore, the constrained problem does not have
an associated or well defined posterior distribution over the
latent space, and so application in science domains is restricted
due to the lack of uncertainty quantification.

B. Analysis and synthesis settings

Often one adopts regularization functions which are com-
puted on projections of the image space, e.g. wavelet space,
harmonic space, gradient space etc.. In such settings one
can formulate optimization problems that consider the inverse
problem latent space to be the image space or the projected
space, giving rise to the analysis and synthesis formulations
respectively. In this way one recovers solutions in pixel-space
x? (analysis) or projected space α?, which are then inverted to
form pixel-space estimates x? = Ψα? (synthesis) [27]–[29].

This is most easily illustrated by considering a simple
example. Consider the wavelet Lasso regression problem in
the analysis form, i.e. an `1 wavelet regularization functional
gA(x) = ‖Ψ−1x‖1 and an `2 data-fidelity term fA(x) =

‖Φx − y‖22. Clearly in the analysis formulation the opti-
mization problems are precisely those given in Section III-A.
However, in the synthesis settings the regularization functional
takes the form gS(α) = ‖α‖1, while the data-fidelity term
is given by fS(α) = ‖ΦΨα − y‖22. With these definitions
the synthesis optimization problem reads in much the same
way as those presented in Section III-A and, in fact, for
situations in which the measurement operator is orthogonal,
i.e. Ψ−1 = Ψ†, these formulations are equivalent. However,
they have very different geometric properties when this is not
the case [27]–[29]. While we not only consider overcomplete
spherical wavelet transforms where Ψ−1 6= Ψ† (see Section
II-B) but in the spherical setting the harmonic transform of
a sampled signal is also not orthogonal, i.e. Y−1 6= Y†

[14] — a notable difference to the discrete Fourier transform
in Euclidean settings. Therefore on the sphere the analysis
and synthesis settings are not equivalent, and often produce
noticeably different results.

In practice the analysis setting has consistently been demon-
strated to exhibit greater reconstruction fidelity, a feature
attributed to the lower cardinality of the analysis solution space
[27]–[29]. However, in previous work it was concluded that
this characteristic may not generalized to the spherical setting
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[24]. In Section V we revisit this analysis and find that the
variation in relative performance, both in terms of reconstruc-
tion fidelity and computational efficiency, of each setting is
dependent on the problem instance under consideration. There-
fore, flexibility with respect to reconstruction formulation
supports development of scalable spherical imaging algorithms
tailored for specific applications. In this work we discover that
implicit bandlimiting is often a determining factor when one
considers inverse problems on the sphere, which impacts the
effective cardinality of the spaces considered. In this sense it
is beneficial to either (i) adopt the synthesis setting in which
signals are implicitly bandlimited during reconstruction or (ii)
introduce explicit bandlimiting to the analysis setting, which is
some settings can be computationally inefficient on the sphere.

An example of such computational savings in the synthesis
setting is demonstrated in Section V-C, where an iterative
Wiener filtering approach is adopted. Should one compute
this optimization in the analysis setting 6 spherical harmonic
transforms would be required per iteration, whereas when
formulated in the synthesis setting only 2 spherical harmonic
transforms are required. As these harmonic transforms are the
primary computational cost, the synthesis formulation (in this
particular example) is ∼ 3 times as computationally efficient.

C. Regularization functionals on the sphere

Having discussed the variety of ways one may formulate
and construct an optimization on the sphere, we should
now consider spherical counterparts to common regularization
functionals and how one can develop these for the spherical
setting. Such regularization functionals include e.g. sparsity
promoting ‖·‖1 regularizers, typically in a sparsifying dictio-
nary Ψ, which are often motivated by the theory of compressed
sensing [9]–[11]; Gaussian ‖·‖22 regularizers, which are often
iterative implementations of harmonic Wiener filters [57],
[58]; and spherical total-variation (TV) priors [14], which
are particularly effective for edge detection and segmentation
tasks.

Most imaging problems exist in the discrete settings, and
so depend on approximations to the underlying continuous
`p-norms. In spherical settings one often adopts equiangular
sampling [43], which does not uniformly sample the contin-
uous norms. Typically this results in disproportionate weight
being applied to pixels located at the poles, due to progressing
increased sampling density away from the equator. To account
for this spherical (directional wavelet) counter-parts to the
traditional norms are defined by

S2‖x‖p = ‖w ◦x‖p ⇒ Ψ‖α‖p =
(∑

j

∑
n

S2‖αj,n‖pp
) 1
p , (12)

respectively, where w ∈ S2 is the corresponding map of re-
ciprocal pixel areas on the sphere, ◦ is the Hadamard product,
and j, n ∈ Z+ are wavelet scale and direction respectively.
This reformulation provides a closer approximation to the
underlying continuous `p-norm on the sphere.

With these corrected norms one can straightforwardly con-
sider, e.g., sparsity in spherical wavelet space Ψ‖Ψ†x‖1.
Such a generalization permits multi-resolution algorithms [20]

resulting in wavelet scale projections of varying resolution,
which provide a significant increase in computational effi-
ciency, a fundamental bottleneck of variational methods on
the sphere. In theory one could leverage the exact quadrature
weights inherent to the underlying spherical sampling theo-
rems [43], however in this work we find simple weights wj,n
which capture the pixel area to be sufficient.

D. Efficient flexible imaging on the sphere

Variational approaches efficiently locate optimal solutions
via iterative algorithms, which typically leverage 1st-order
(gradient) information to navigate towards extremal values.
Furthermore, for convex objectives, such algorithms permit
strong guarantees of both convergence and the rate of con-
vergence. Imaging problems often adopt non-differentiable
regularization functionals (e.g. `1-norms) for which proximal
operators may be used to navigate the objective function (see
[59]), thus motivating proximal convex optimization algo-
rithms.

Convex optimization algorithms require successive itera-
tions to sufficiently converge to the optimal solution; as such,
any operators evaluated must be efficient and precise, so as
to facilitate accurate, scalable methods. These considerations
are more pronounced when considering optimization over
spherical manifolds, wherein underlying operators (e.g. spin-s
spherical harmonic transforms) scale poorly with dimension
(∝ O(L3) in the best case scenario). Additionally, a large
subset of optimization algorithms require adjoint † opera-
tors (e.g. adjoint spherical harmonic and wavelet transforms),
which are often incorrectly approximated by their inverse
operators, introducing unpredictable errors and breaking con-
vergence guarantees. Furthermore, on the sphere one must
also consider the weighting scheme presented in Section III-C.
These weights can be incorporated into proximal optimization
algorithms in a variety of ways, e.g. through a direct operator
that performs the weighting or by weighting norms. However,
to avoid additional complications (e.g. under certain norms
operators to apply weightings do not represent tight frames
and therefore one must perform additional sub-iterations) we
simply weight the norms directly.

During this research we developed a highly optimized object
oriented (OOP) C++ software framework (S2INV) which
permits all the aforementioned flexibility. The equiangular
sampling theorem on the sphere of [43] is adopted through
the SSHT2 package, which permits fast and efficient spin-s
spherical harmonic transforms, whilst permitting machine pre-
cision computation. Additionally, we adopt optimized scale-
discretized directional wavelets on the sphere [19], [21], [22]
through the S2LET3 package [20], [24], which are optimally
sampled and support machine precision synthesis. We leverage
a recently developed, highly optimized C++ OOP sparse opti-
mization framework SOPT4 [13], [41], [42], which facilitates
a variety of proximal convex optimization algorithms, e.g.
forward-backward [60], [61], primal dual [30], [31], [62],

2https://astro-informatics.github.io/ssht/
3https://astro-informatics.github.io/s2let/
4http://astro-informatics.github.io/sopt/

https://astro-informatics.github.io/ssht/
https://astro-informatics.github.io/s2let/
http://astro-informatics.github.io/sopt/
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[63], and the alternating direction method of multipliers [64],
which appropriate modification for the spherical setting. In this
way S2INV provides a scalable, flexible, open-source software
package, which is fully customizable and supports a wide
variety of novel, fully principled, uncertainty quantification
techniques on the sphere, which we discuss in Section IV.

IV. SPHERICAL BAYESIAN UNCERTAINTY
QUANTIFICATION

The unconstrained reconstruction problem has a straightfor-
ward Bayesian interpretation which is as follows. The posterior
distribution of a spherical image x ∈ CNS2 defined over, e.g.,
the celestial sphere or the globe, given observations y ∈ CM
is given by Bayes’ theorem,

P (x|y;M) ≡ P (y|x;M)P (x;M)∫
CNS2 P (y|x;M)P (x;M)dx

, (13)

where the likelihood encodes data fidelity, the prior encodes
a priori information of the image, and M represents some
model, which includes the mapping Φ ∈ CM×NS2 : x 7→ y,
and some understanding of the noise inherent to y [32]. Note
that the marginal likelihood (Bayesian evidence) is a constant
scaling of the posterior and can be used for model comparison,
which we do not consider further in this article.

Typically sampling methods, e.g. Markov chain Monte
Carlo, are adopted to sample from the posterior distribution
from which one can determine a point estimation of the solu-
tion to the inverse problem and the distribution of uncertainty
about such a solution. Although these methods recover asymp-
totically exact estimates of the posterior distribution, they
typically require large numbers of samples to converge. Each
sample requires at least a single evaluation of the posterior
which in spherical settings is computationally demanding —
for moderate resolutions L > 103 sampling methods rapidly
become computationally intractable.

Instead consider a variational approach that maximizes the
posterior odds, referred to as the maximum a posteriori (MAP)
solution defined by

xMAP ≡ argmax
x

{
P (x|y;M)

}
,

∝ argmin
x

{
− log( P (y|x;M)P (x;M) )

}
,

∝ argmin
x

{
h(x) = f(x) + g(x)

}
, (14)

where the second line follows by the monotonicity of the
logarithm function. For convex objective functions h(x) this
takes the form of a convex optimization problem [30], and
therefore the unconstrained problem in Equation 10 explicitly
returns the MAP solution, as previously asserted in Section
III-A. Hence, leveraging state-of-the-art convex optimization
techniques (e.g. S2INV on the sphere, as outlined in Section
III-D) one can efficiently locate the solution which maximizes
the posterior odds. However this is still a point estimate which,
though useful, does not naively support uncertainty quantifica-
tion. Recently, approximate contours of the latent space have
been derived facilitating variational regularization methods
with principled uncertainty quantification. We discuss these
approximate methods and develop uncertainty quantification

techniques on the sphere, which we accelerate by exploiting
function linearity.

A. Highest posterior density credible regions

A credible region Cα ⊂ CNS2 of the posterior latent space
at credible confidence 100(1 − α)%, for α ∈ [0, 1], satisfies
the integral equation [32]

P (x ∈ Cα|y;M) =

∫
x∈CNS2

P (x|y;M)ICαdx = 1− α,
(15)

where the set indicator function ICα = 1 if x ∈ Cα and 0
otherwise. Clearly, there are infinitely many credible regions.
The optimal credible region in the sense of minimal volume
[32] is the highest posterior density (HPD) credible region
defined by Cα := {x : h(x) ≤ εα}, where εα ∈ R+ is an
isocontour of the log-posterior. Direct determination of the
HPD region requires computation of the integral in Equation
15, which is computationally infeasible in even moderate di-
mensional spherical settings — due to both dimensionality and
functional complexity considerations. Convex objectives h(x)
support the conservative approximate HPD credible region C ′α
defined by [35]

Cα ⊆ C ′α ⊂ CNS2 :=
{
x : h(x) ≤ ε′α

}
,

where ε′α = h(xMAP) +
√

16N log(3/α) +N, (16)

which allows one to approximate Cα with only knowledge of
the MAP solution xMAP and the dimension N = xMAP. An
upper bound on the approximation error exists [35]. Therefore
for convex objectives, given xMAP, one may draw statistically
principled conclusions. This credible set approximation has
been leveraged to develop fast Bayesian uncertainty quantifi-
cation techniques in a variety of settings [35]–[40].

B. Bayesian hypothesis testing on the sphere

Perhaps the most straightforward uncertainty quantification
technique one may generate by leveraging the approximation
of Equation 16 is that of hypothesis testing [1], [36], [38].
The general idea of hypothesis testing is to adjust some
feature of the recovered estimator xMAP so as to generate
a surrogate solution xsur, of which we ask xsur ∈ C ′α? If
xsur 6∈ C ′α ⇒ xsur 6∈ C ′, which follows from the conservative
nature of the approximation in Equation 16, the feature of
interest is considered to be statistically significant (necessary
to the reconstruction) at 100(1−α)% confidence. Conversely
xsur ∈ C ′α indicates that the surrogate solution remains within
the approximate credible set and we conclude that the feature
adjusted is indeterminate.

C. Local credible intervals on the sphere

Suppose one recovers an optimal solution xMAP through
unconstrained convex optimization (see Section III-A) and
wishes to quantify the uncertainty associated with a given
pixel or super pixel (collection of pixels). With knowledge
of the approximate level set threshold ε′α (see Section IV-A),
and therefore the approximate HPD credible set C ′α at well
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defined confidence (100−α)%, one simply needs to iteratively
compute the extremal values a given region of interest may
take, such that the resulting solution falls outside of the
approximate HPD credible set, i.e. xsur 6∈ C ′α. One must then
define which types of regions (super-pixels) on the sphere one
is interested in, as discussed below.

Formally, select independent partitions of the latent space
Ω = ∪iΩi for which we define super-pixel indexing functions
Ωi such that xi ∈ Ωi ⇒ ζΩi = 1 and xi /∈ Ωi ⇒ ζΩi = 0.
For a given Ωi locate upper (lower) bounds ξ+,Ωi , ξ−,Ωi
respectively, which saturate the HPD credible region C ′α
[36], [39]. Mathematically this is achieved by the following
optimizations,

ξ+
Ωi

= max
ξ∈R+

{
ξ|f(xi,ξ) + g(xi,ξ) ≤ ε′α

}
ξ−Ωi = min

ξ∈R+

{
ξ|f(xi,ξ) + g(xi,ξ) ≤ ε′α

}
, (17)

where xi,ξ = xMAPζΩ/Ωi + ξζΩi is a surrogate solution
where the super pixel region has been replaced by a uniform
intensity ξ. The collective set of these bounds {|ξ+

Ωi
− ξ−Ωi |}

is taken to be the local credible interval map [36], which can
simply be recovered via bisection. Though conditional local
uncertainty quantification techniques such as this have demon-
strated utility in certain circumstances [36], [38]–[40], in the
high dimensional spherical settings they can quickly become
dilute [1]. This makes intuitive sense, as small (local) objects
(super-pixels) in high dimensional settings become statistically
insignificant. As such, in high-dimensional spherical settings
global or aggregate (statistical) uncertainty quantification tech-
niques are often more meaningful (see e.g [1]).

1) Uniform spherical gridding: Somewhat straightfor-
wardly this partitioning scheme can be used to split the equi-
angularly sampled sphere into super pixels of equal angular
dimensions. This corresponds to super pixels representing
larger regions at the equator, and smaller regions towards either
pole. The benefit of this scheme is direct interpretability; these
are uncertainties directly on the recovered pixel-space.

2) Equal area gridding: In the spherical setting it is some-
times more meaningful to define a super pixel by a fixed
physical area surrounding a defined central pixel. Practically
this is computed as follows: define a central pixel on the sphere
in equiangular sampling, rotate this pixel to a pole (as the
angular resolution at the poles provides greater fine tuning of
super-pixel area), select a given angular deviation from the
pole, define this spherical capped region as the super pixel.
In this way all super pixels are, by definition, of equal area.
Alternatively one may wish to consider projections into equal
area sampling (e.g. HEALPix sampling [65]).

D. Acceleration through linearity

Naive computation of local credible intervals through bi-
section can often require many evaluations of the objective
function, which is particularly costly when one considers
functions on the sphere. To avoid this computational bottle-
neck we exploit the linearity of such operators. Consider the
generalized convex objective function for the analysis setting,

without loss of generality, which can be written as

h(x) = f(x) + g(x) = ‖Φx− y‖p2

p1
+ ‖Ψ†x‖q2q1 . (18)

Consider again the partition xsur = xζΩ/Ωi+ξζΩi upon which
the applications of any linear operator L is given trivially by
linearity to be Lxsur = LxIζΩ/Ωi

+ ξLIζΩi , where Iζχ is the
binary vector representation of indexing function ζχ. Explicitly
expanding Equation 18 with linearity one finds

‖ΦxIζΩ/Ωi + ξΦIζΩi − y‖
p2

p1
+ ‖Ψ†xIζΩ/Ωi

+ ξΨ†IζΩi‖
q2
q1
,

⇒ ‖a+ ξb‖p2

p1
+ ‖c+ ξd‖q2q1 , (19)

for constant (per credible interval) vectors defined to be

a = ΦxIζΩ/Ωi
− y b = ΦIζΩi

c = Ψ†xIζΩ/Ωi
d = Ψ†IζΩi (20)

In this way the local credible optimization problems in Equa-
tion 17 can be re-written instead as

‖a+ ξb‖p2

p1
+ ‖c+ ξd‖q2q1 ≤ ε

′
α, (21)

which is clearly just a 1-dimensional polynomial root finding
problem. One could approach this inequality from an itera-
tive perspective, forming upper (lower) bounds through the
Minkowski and Hölder’s inequalities, which are then leveraged
as initialization for bisection. Interestingly, for polynomials of
order < 5 (see Abel-Ruffini theorem) Equation 21 permits
analytic solutions. In practice the computational difference be-
tween the analytic solution and solving an inequality bounded
bisection problem is only of order a few, though in high
dimensions this speed up is non-negligible.

1) Gaussian regression: Suppose one adopts both a Gaus-
sian likelihood and prior (e.g. iterative Wiener filtering ap-
proaches), in such a setting we have p1 = p2 = q1 = q2 = 2
which reduces the general polynomial Equation 21 to a 2nd-
order polynomial

‖a+ ξb‖22 + ‖c+ ξd‖22 ≤ ε
′
α, (22)

which straightforwardly expands to binomial inequality[
‖b‖22+‖d‖22

]
ξ2+2

[
a·b+c·d

]
ξ+
[
‖a‖22+‖c‖22

]
≤ ε′α. (23)

One could gain some geometric insight by considering the
case in which a · b+ c ·d = 0, as in such a case the resulting
credible region about the posterior is symmetric, however we
do not consider this further here. Nonetheless, per credible
region one need only compute the constants and the interval
is trivially recovered.

2) Lasso regression: Consider the Lagrangian dual of the
Lasso regression (e.g. sparse reconstruction), in which we have
p1 = p2 = 2 and q1 = q2 = 1, such that the general
polynomial Equation 21 reduces to a 2nd-order polynomial

‖a+ ξb‖22 + ‖c+ ξd‖1 ≤ ε
′
α (24)

which, assuming the intersection of the partitions projected
into Ψ is negligible, i.e. the dictionary Ψ has sufficient
localization properties on the sphere, results in the binomial
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inequality

‖b‖22ξ
2 + 2

[
a · b+ ‖d‖1

]
ξ +

[
‖a‖22 + ‖c‖1

]
≤ ε′α, (25)

which can be analytically solved. Typically the partitions Ωi
projected into Ψ exhibit overlapping support and so this
inequality is not exact. In such cases one can exploit the
triangle inequality to initialize a bisection which converges
rapidly to the accurate roots, computing only this `1 term
at each iteration. In practice one can always gain significant
acceleration (a key component for inference on the sphere).

V. NUMERICAL EXPERIMENTS

In this section we showcase the variational regularization
and uncertainty quantification techniques presented in Section
III and Section IV on a diverse set of numerical experiments.
For each scenario we create mock observations y = Φx of a
ground truth signal x which are related through the forward
model Φ : x 7→ y from which we formulate an ill-posed
inverse problem (e.g. add noise, mask, blur, etc.). We solve this
inverse problem for an estimator x? (xMAP) of x the success
of which we quantify by the recovered signal to noise ratio,
defined by SNR = 20 log10(‖x‖2/‖x− x?‖2).

A. Earth satellite topography

Suppose a satellite performs observations y ∈ RM of
the Earth’s topography (geographic elevation) which can be
related to the true topography x ∈ RNS2 through a mapping
(forward model) ΦET ∈ RM×NS2 : x 7→ y. Consider the
scenario in which incomplete, i.e. |M | � |NS2 |, observa-
tions y are contaminated with independent and identically
distributed (i.i.d.) Gaussian noise n ∼ N (0, σ2) ∈ RM , and
blurred with an axisymmetric smoothing kernel with full width
half maximum (FWHM) Θ. In such a case observations are
modeled by y = ΦETx+ n for measurement operator

ΦET = DY−1ΘY and Φ†ET = Y†Θ (Y−1)†D†, (26)

where Y,Y−1 are forward and inverse spin-0 spherical har-
monic transforms correspondingly (see section II), D,D† are
masking and projection operators correspondingly, Θ is the
axisymmetric convolution with the harmonic representation of
Θ which is trivially self-adjoint, and † represents the adjoint
operation.

As n is a univariate Gaussian the data-fidelity (log-
likelihood) term is simply given by 1

2σ2 S2‖ΦETx− y‖22. Here
we adopt a sparsity promoting `1-norm wavelet regularization
Ψ‖Ψ†(·)‖1 (Laplace distribution log-prior), and solve both
the constrained formulation through the proximal ADMM
algorithm [64] and the unconstrained formulation through the
proximal forward backward algorithm [30], [60], [61], in both
the analysis and synthesis settings. Notice the use of spherical
(wavelet) space norms, outlined in Section III-C, which better
approximate spherical continuous norms.

To quantify the impact of analysis versus synthesis (and
constrained versus unconstrained) settings we consider all
settings in two paradigms (i) varying levels of inpainting with-
out deconvolution (ii) varying scales of deconvolution with
50% masked pixel inpainting. Generally, each problem setup

Axisymmetric kernel scale Θ′Fraction of sphere observed

SN
R

(d
B

)

Fig. 1. Left: Recovered SNR for a variety of problem setups over a variety
of inpainting scenarios versus % of pixels observed. Right: Recovered SNR
for a variety of problem setups versus variety of axisymmetric blurring kernel
scales, for a fixed inpainting of 50% masked pixels. Discussion: Generally
each setup performs similarly and it would appear that no single setting is
optimal in all cases. Notice the drastic underperformance of the analysis
constrained formulation in the heavily masked regime for the inpainting
problem. We find that this asymmetry is due to the implicit spherical harmonic
bandlimiting inherent to the synthesis problem (see text).

performs comparably in all settings considered (see Figure 1).
Certainly it cannot be said that one reconstruction paradigm
is optimal in all settings, which leads us to conclude that it is
likely that problem formulation optimality is ambiguous and
should be selected on a case by case basis. Interestingly, notice
the underperformance of the constrained analysis problem in
the heavily masked regime (see the left plot of Figure 1). This
was observed in prior analysis [24] and reported as evidence
that the synthesis setting may produce more optimal results.

Note that the synthesis setting implicitly bandlimits the
observations x, therefore restricting the solution space car-
dinality — a factor known to impact reconstruction fidelity
[27]. To account for this bias we reran the analysis optimiza-
tion with an adjusted measurement operator which explicitly
bandlimited the signal on the sphere. It was found that the
analysis setting performs similarly to the synthesis setting
for this problem, leading us to conclude that the optimality
of analysis versus synthesis, and in fact constrained versus
unconstrained, settings is at best ambiguous. The results from
solving the unconstrained formulation of the analysis prob-
lem for inpainting with 50% of potential observations being
masked can be seen in Figure 2. Furthermore, we demonstrate
the uncertainty quantification techniques developed in Section
IV-C and Section IV-D, which may also be seen in Figure 2
with equal area super-pixels.

B. 360◦ camera blur deconvolution

Suppose a 360◦ camera captures a greyscale spherical image
y ∈ RMS2 which can be related to the true image x ∈ RNS2

through the forward model Φ360◦ ∈ RMS2×NS2 : x 7→ y.
Consider that the camera captures complete |MS2 | = |NS2 |
observations but introduces low-level i.i.d. Gaussian noise
n ∼ N (0, σ2) ∈ RMS2 and a certain amount of lens blurring
characterized by axisymmetric convolution with a Gaussian
smoothing kernel with FWHM = Θ. In this case observations
are modeled by y = Φ360◦x+ n for measurement operator

Φ360◦ = Y−1ΘY and Φ†360◦ = Y†Θ (Y−1)†, (27)
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Observations Reconstruction

Uncertainty

Observations Reconstruction

Uncertainty

Observations Reconstruction

UncertaintyFig. 2. Left: Simulated observations contaminated with 30dB Gaussian
i.i.d. noise, convolved with a ∼ 268 arc-minute Gaussian blurring kernel,
and with 60% of pixels masked. Right: Unconstrained reconstruction using
`1-norm wavelet sparsity regularization (log-prior) in the analysis setting,
adopting the proximal forward-backward algorithm [30], [60], [61]. Bottom:
Bayesian local credible intervals at 99% confidence (reconstruction values are
∈ [−1, 1]), which are pixel-level uncertainties (see Section IV.)

Observations Reconstruction

Observations ReconstructionObservations Reconstruction

Fig. 3. Left: Simulated observations contaminated with 30dB Gaussian noise
and convolved with a ∼ 78 arc-minute Gaussian blurring kernel (e.g. motion
blur). Right: Spherical TV-norm ‖x‖TV regularized reconstruction through
proximal primal dual algorithm in the analysis setting.

where Y,Y−1 are forward and inverse spherical harmonic
transforms correspondingly (see section II), Θ is the axisym-
metric convolution with the harmonic representation of Θ.

As in the previous example the data-fidelity is given by
the S2‖Φ360◦x − y‖22. Depending on the degree to which
x is piece-wise constant the TV-norm S2‖x‖TV = S2‖∇x‖2
(promoting gradient sparsity) constitutes a good choice of
regularizer. Generally for image deconvolution an analysis
wavelet sparsity promoting regularizer Ψ‖Ψ−1x‖1 is often also
considered. Here we consider both regularization functionals
g(x) = {S2‖x‖TV,Ψ‖Ψ

−1x‖1} in the constrained analysis
setting:

x? = argmin
x∈CNS2

{
g(x)

}
s.t.

1

2σ2 S2‖Φ360◦x− y‖22 ≤ δ, (28)

where δ ∈ R+ is the radius of the `2-ball Bδ`2 which balances
sparsity against data-fidelity, and is defined straightforwardly
from the known (in general unknown) noise variance. We
perform an example reconstruction with both priors in the
constrained formulation of the analysis problem using the
proximal primal dual algorithm [30], [31], [62], [63]. In this
case, it is found that both priors produce similar results, with
wavelet sparsity regularization recovering SNR=17.60 dB and
TV-norm marginally superior at SNR = 17.65 dB — the latter
of which is provided in Figure 3. One should note that the

efficacy of TV-norm regularization is strongly dependent on
the degree to which a given signal is piece wise constant.

C. CMB temperature anisotropies

Suppose one captures masked (and therefore incomplete)
measurements of the cosmic microwave background (CMB;
[3]) y ∈ CMS2 that can be related through a mapping operator
ΦCMB ∈ CMS2×NS2 to the full-sky CMB signal x ∈ CNS2

which can be decomposed into harmonic coefficients x̂`m =
〈x, Y`m〉 which for Gaussian fields such as CMB [3]) are
uncorrelated and isotropic E[x̂∗`mx̂`′m′ ] = δ``′δmm′C`, where
C` is the angular power spectrum.

These considerations motivate the choice of a multivariate
Gaussian prior P (x̂|M) = exp

(
−x̂†C−1x̂/2

)
for vectorized

harmonic coefficients x̂ and covariance C given by diagonal
elements C`. Consider the case in which |MS2 | � |NS2 |
with i.i.d. Gaussian noise n ∼ N (0, σ2) ∈ CMS2 then the
whitened harmonic coefficients x̂′ = C− 1

2 x̂ are modeled as
y = ΦCMBx̂

′ + n for measurement operator

ΦCMB = DYC
1
2 and Φ†CMB = C

1
2 Y†D†, (29)

for spherical harmonic transform Y and masking and projec-
tion operators D,D† respectively. For diagonal noise covari-
ance Σ = σI the univariate Gaussian likelihood is given by
P (y|x̂′;M) = 1

2σ2 S2‖ΦCMBx̂
′ − y‖22, and so the synthesis

unconstrained optimization is given by

x̂MAP′ = argmin
x̂′

{
‖x̂′‖22 +

1

2σ2 S2‖ΦCMBx̂
′ − y‖22

}
, (30)

where the pixel space signal is recovered by xMAP =

Y−1C
1
2 x̂MAP′. This is the convex optimization formulation

of what is commonly known as Wiener filtering, which is
often adopted for highly Gaussian fields, e.g. the CMB. As
expected for Wiener filtering problems of this type (e.g. Figure
6 in [58]), we recover maps which exhibit inpainting of low-
` modes (large scale structure) into the masked regions. The
results of this experiment can be seen in Figure 4.

D. Weak gravitational lensing

The following example considers spherical imaging of dark
matter. A more extensive analysis that applies the method
presented to observational data, and not just simulations, is
performed in [1] by some of the authors of the current article,
which leverages many of the methods developed in this work.
Weak gravitational lensing is a cosmological phenomenon in
which the light from distant galaxies is warped as it travels
through the local matter topology, from which one can define
the spin-0 lensing potential 0φ(r, ω) ∈ CNS2 [66]. At first
order, gravitational lensing manifests itself into the spin-0
convergence 0x(r, ω) ∈ CNS2 — the integrated (dark) matter
field along the line of sight — and the spin-2 shear 2y(r, ω) ∈
CNS2 — the ellipticity of observed images — which can
be related to φ by 0x(r, ω) = 1

4 (ð+ð− + ð−ð+) 0φ and
2y(r, ω) = 1

2ð+ð+ 0φ, where ð± are spin-raising/lowering
operators defined in Equation 1. One can then relate 0x and
2y to one another in harmonic space by 2ŷ`m = W` 0x̂`m,
for harmonic space kernel defined in [1], [2].As 0x is not
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directly observable, typically observations of 2y are collected
and used to reconstruct 0x. Suppose one recovers observations
y ∈ CM which can be related to the x ∈ CNS2 via the
forward model ΦWL ∈ CM×NS2 : x 7→ y. Consider the
scenario in which y are contaminated with i.i.d. Gaussian
noise n ∼ N (0, σ2) ∈ CM , then the observations are modeled
by y = ΦWLx+ n for measurement operator

ΦWL = D2Y−1W0Y and Φ†WL = 0Y†W(2Y−1)†D†, (31)

for self-adjoint harmonic space multiplication W with the
axisymmetric kernel W`, masking and projection operators
D,D†, and spin-s forward and inverse spherical harmonic
transforms sY, sY

−1 respectively.
Since principled statistical interpretation is crucial for this

science application, one may consider the unconstrained for-
mulation of this inverse problem which we solve here with the
proximal forward-backward algorithm in the analysis setting,
with univariate Gaussian likelihood (data-fidelity) and sparsity
promoting Laplace type spherical wavelet prior (regularization
functional, see Section II-B),

xMAP = argmin
x∈CNS2

{
λΨ‖Ψ−1x‖1 +

1

2σ2 S2‖ΦWLx−y‖22
}
, (32)

for automatically marginalized regularization parameter λ ∈
R+ (see Section III-A). Note that sparse priors are often
adopted in the weak lensing setting, recovering state-of-the-art
results [1], [38], [67], [68]. Images from this experiment can be
seen in Figure 5. A more in depth application of the methods
developed in this paper to dark matter reconstruction can be
found in [1], in which global hypothesis testing (leveraging the
techniques of Section IV-B) is performed to determine whether
two reconstruction methods produce commensurate estimates.

VI. CONCLUSION

We present and discuss a flexible, general framework for
variational imaging on the sphere. We consider different
formulations of inverse problems as either constrained or
unconstrained problems [30] in both the analysis and syn-
thesis settings [24], [27]. The implications, advantages, and
disadvantages of each choice within the context of imaging on
the sphere is considered both qualitatively and quantitatively.
Crucially, we highlight the direct relationship between the
unconstrained setting and Bayesian inference. We combine
this realization with recent developments in the field of
probability density theory [35] to demonstrate how one can
perform rapid, statistically principled uncertainty quantifica-
tion on reconstructed signals (building upon work in [35]–
[40]). Furthermore, we demonstrate mathematically how one
may exploit linearity and general inequality relations to dra-
matically accelerate such uncertainty quantification techniques
in all settings. It is shown that in a variety of interesting
cases these uncertainty quantification techniques reduce to
computationally trivial 1-dimensional P th-order polynomial
root finding problems, which can often be solved analytically.
While such computational savings are key for scalable, statis-
tically principled spherical imaging, they are likely also of use
for standard 2-dimensional Euclidean imaging.

Observations Reconstruction

Observations ReconstructionObservations Reconstruction

Fig. 4. Left: Simulated Gaussian random field generated from lambda cold
dark matter (Λ-CDM) best fit power spectrum, masked by a Planck survey
mask [3] and polluted by 30dB i.i.d. Gaussian noise. Right: Unconstrained
reconstruction using an `2-norm Wiener prior solved by the proximal forward-
backward algorithm, in the synthesis setting (for computational efficiency).
The purpose of this reconstruction is to observe recovered low-`, large-scale
information into the masked region (see e.g. [58]).

Real observations Imag observations

Reconstruction

Real observations Imag observations

Reconstruction

Real observations Imag observations

Reconstruction

Real observations Imag observations

Reconstruction

Fig. 5. Top: Simulated weak lensing shear field generated from a ground
truth N-body simulation [69] signal, which was further contaminated with
5dB i.i.d. Gaussian noise and masked using realistic pseudo-Euclid survey
mask. Bottom: Unconstrained reconstructed dark matter mass-map using
`1-norm wavelet sparsity prior solved through using the proximal forward-
backward algorithm in the analysis setting. See related works [1] for a
comprehensive example with application of the uncertainty quantification
techniques developed in the current article.

The aforementioned techniques are demonstrated on an
extensive suite of numerical experiments, which simulate a
diverse set of typical use-cases. Specifically, we consider a
spread of deconvolution, inpainting, and de-noising problems,
e.g. from resolving blurred 360◦ camera images, to imaging
the dark matter distribution on the celestial sphere. It is
found that that optimality of problem formulation (constrained
versus unconstrained) and setting (analysis versus synthesis)
is highly situationally dependent on the sphere. Another
key contribution of this work is the scalable, open-source
spherical reconstruction software S2INV, which the authors
make publicly available. This software provides a C++ OOP
framework, in addition to a lightweight Python extension, and
was leveraged to conduct all numerical experiments.
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