
MNRAS 000, 1–17 (2018) Preprint 22 November 2018 Compiled using MNRAS LATEX style file v3.0

Evaluating machine learning techniques for predicting power
spectra from reionization simulations

W. D. Jennings 1, C. A. Watkinson 2, F. B. Abdalla 1, J. D. McEwen 3
1 Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
2 Blackett Laboratory, Imperial College, London, SW7 2AZ, UK
3 Mullard Space Science Laboratory, University College London, Surrey RH5 6NT, UK

Accepted 2018 November 20. Received 2018 November 20; in original form 2018 September 14

ABSTRACT

Upcoming experiments such as the SKA will provide huge quantities of data. Fast mod-
elling of the high-redshift 21cm signal will be crucial for efficiently comparing these data sets
with theory. The most detailed theoretical predictions currently come from numerical simula-
tions and from faster but less accurate semi-numerical simulations. Recently, machine learning
techniques have been proposed to emulate the behaviour of these semi-numerical simulations
with drastically reduced time and computing cost. We compare the viability of five such ma-
chine learning techniques for emulating the 21cm power spectrum of the publicly-available
code SimFast21. Our best emulator is a multilayer perceptron with three hidden layers, repro-
ducing SimFast21 power spectra 108 times faster than the simulation with 4% mean squared
error averaged across all redshifts and input parameters. The other techniques (interpolation,
Gaussian processes regression, and support vector machine) have slower prediction times and
worse prediction accuracy than the multilayer perceptron. All our emulators can make predic-
tions at any redshift and scale, which gives more flexible predictions but results in significantly
worse prediction accuracy at lower redshifts. We then present a proof-of-concept technique
for mapping between two different simulations, exploiting our best emulator’s fast predic-
tion speed. We demonstrate this technique to find a mapping between SimFast21 and another
publicly-available code 21cmFAST . We observe a noticeable offset between the simulations for
some regions of the input space. Such techniques could potentially be used as a bridge between
fast semi-numerical simulations and accurate numerical radiative transfer simulations.
Key words: cosmology - dark ages, reionization - statistical methods

1 INTRODUCTION

The Dark Ages of the Universe ended when the first stars and
galaxies begin to form. Radiation from these sources ionized the
surrounding matter, eventually giving rise to bubbles of ionized
hydrogen. The size, shape and clustering properties of these bub-
bles contain valuable information about how our Universe evolved
during these otherwise obscure times. Direct observation of these
bubbles requires us to distinguish between ionized regions and neu-
tral regions. Themost promising probe for this is the 21cm hyperfine
transition of hydrogen, which is emitted exclusively by neutral hy-
drogen during the proton-electron interaction. Measurements of the
21cm signal on the sky give us an image of the neutral hydrogen in
the Universe and, by tracing this signal signal back through time,
we can extend these images into three-dimensional maps.

Observational difficulties have so far prevented us from cre-
ating such three-dimensional maps. The signal is much weaker
than other foreground sources at similar frequencies and it is dif-
ficult to extract the actual 21cm signal from these foregrounds.
Past and ongoing experiments such as Murchison Widefield Ar-

ray1 (MWA, Tingay et al. 2013), the Low Frequency Array2 (LO-
FAR, Patil et al. 2017), and the Precision Array for Probing the
Epoch of Reionization3 (PAPER, Ali et al. 2015) have begun to
place limits on the overall intensity of the signal. Upcoming ex-
periments such as the Hydrogen Epoch of Reionization Array4

(HERA, DeBoer et al. 2017) and the Square Kilometre Array5

(SKA, Mellema et al. 2013) will be able to provide more detailed
measurements and should allow us to make first parameter con-
straints for our models.

Theoretical modelling of the 21cm signal involves answering
questions about the reionization processes: what were the main
sources of ionizing photons; when did reionization start; how
long did it last? The most detailed theoretical predictions are

1 http://www.mwatelescope.org/telescope
2 http://www.lofar.org/
3 http://eor.berkeley.edu/
4 http://reionization.org/
5 https://www.skatelescope.org/

© 2018 The Authors

2 W. D. Jennings et al.

currently from numerical and semi-numerical simulations. The
most likely reionization scenarios can be extracted by com-
paring such simulations to data, most efficiently by combining
fast approximate semi-numerical simulations with sampling
methods such as MCMC to perform parameter estimation
(Greig & Mesinger 2015, Hassan et al. 2017, Liu et al. 2016,
Pober et al. 2016, Greig et al. 2016, Greig & Mesinger 2018). Two
semi-numerical simulations are SimFast21 (Santos et al. 2010)
and 21cmFAST (Mesinger et al. 2011), which generate three-
dimensional realisations of the 21cm signal. Much work
has gone into finding efficient summary statistics for the
simulation outputs. Common summary statistics are the
power spectrum and its higher-order equivalent the bis-
pectrum (Shimabukuro et al. 2016, Watkinson et al. 2017,
Majumdar et al. 2018 and Watkinson et al. 2018). Both statis-
tics contain information about the clustering properties of ionized
hydrogen bubbles.

Semi-numerical simulations take minutes to hours to run.
Recently machine learning techniques have been suggested for a
number of uses: to emulate power spectrum outputs quickly from
21cmFAST (Schmit & Pritchard 2018, Kern et al. 2017), to derive
reionization parameters directly from the 21cm power spectrum
(Shimabukuro & Semelin 2017), and to derive reionization param-
eters from 21cm images (Gillet et al. 2018). In the first application,
models are trained to mimic the outputs that would have resulted
from an actual simulation. Training involves running a represen-
tative sample of actual simulations and learning to mimic their
behaviour. After training, the models can make fast power spec-
trum predictions at any new input points. The ultimate aim of such
an approach would be to train models to mimic the more accu-
rate numerical simulations, allowing for more accurate parameter
estimation.

In this paper, we evaluate the viability of five machine learn-
ing techniques for emulating the 21cm power spectrum from Sim-
Fast21. We analyse the prediction speeds of the resulting emu-
lators and their accuracy across the standard reionization input
parameter space. The emulators in Schmit & Pritchard 2018 and
Kern et al. 2017 were trained at fixed scales and fixed redshifts.
Such emulators make predictions only at these fixed scales and
redshifts, so that if other scales or redshifts are desired one must
interpolate further. We use the scales and redshifts directly as extra
inputs to the trained models, so that they learn to make predictions
for any requested scale and redshift. This method is theoretically
more flexible but gives rise to poorer prediction accuracy at lower
redshifts.

We then use our best emulator candidate to present a proof-of-
concept technique for determining a relationship between two differ-
ent simulations.We demonstrate the technique by finding amapping
between the inputs of SimFast21 and those of 21cmFAST by mea-
suring which inputs result in the most similar output power spectra.
This method could potentially be used to bridge between fast semi-
numerical simulations and more accurate three-dimensional radia-
tive transfer codes, see for example C2-RAY (Mellema et al. 2006)
and LICORICE (Semelin et al. 2017; Kulkarni et al. 2016). In our
conclusions we comment on the feasibility of using our method for
this purpose, both in light of our results and in the context of the
known discrepancy between numerical and semi-numerical codes
(see for example Majumdar et al. 2014).

The rest of the paper is split in to the following sections. In Sec-
tion 2 we describe the reionization models used in the simulations.
Section 3 contains descriptions of the machine learning techniques
we used. In Section 4 we briefly describe the specifics of how our

emulators were trained. We present the results of training our em-
ulators in Section 5. Section 6 is a discussion of the accuracy and
speed performance of the different machine learning techniques,
and how their performance depends on the input parameters. Sec-
tion 7 contains the proof-of-concept method for mapping between
SimFast21 and modified 21cmFAST , using our best emulator. We
end the paper in Section 8 with our conclusions. For Cosmologi-
cal parameters, we use ΩM = 0.270, Ωb = 0.046, ΩΛ = 0.730,
H0 = 71.0km s−1Mpc−1, ns = 0.960, σ8 = 0.810, the default
parameters in the SimFast21 package6.

2 MODELS OF REIONIZATION

The 21cm differential brightness temperature δTb is defined as the
difference between the measured 21cm brightness temperature and
the uniform backgroundCMBbrightness temperature. By removing
the backgroundCMB temperature, the value of δTb(®r) then specifies
the extent of 21cm emission (δTb > 0) or absorption (δTb < 0). The
actual observable for radio interferometers is δTb − 〈δTb〉, where
〈δTb〉 is the global reionization signal averaged across the whole
sky. Furlanetto et al. (2006) gives an approximate relationship for
the 21cm brightness temperature δTb(®r) as

δTb(®r) = 27xHI(®r)
[
1 + δ(®r)

] (
Ωbh2

0.023

) (
0.15
ΩMh2

)1/2
(1)(

1 − TΓ
TS

) (
1 + z

10

)1/2 (
H(z)

H(z) + δr vr (®r)

)
mK .

This approximation includes the effects of neutral hydrogen fraction
xHI(®r); total matter density contrast δ(®r); cosmological parameters
for the densities of baryonic matter Ωb and total matter ΩM; the
CMB temperature TΓ; the spin temperature TS which quantifies the
relative populations of neutral hydrogen atoms in the higher and
lower energy states; the Hubble parameter H(z); and δr vr (®r), the
radial velocity gradient.

2.1 Power spectrum for δTb

We train our emulators to reproduce correlations in fluctuations of
the differential brightness temperature. Fluctuations in δTb(®r) are
given by

∆Tb(®r) =
δTb(®r) −

〈
δTb(®r)

〉〈
δTb(®r)

〉 , (2)

where 〈δTb(®r)〉 is again the global reionization signal measured
across the whole sky. The correlation in these fluctuations is the
power spectrum

P∆Tb (®k) δ
3
D(®k − ®k

′) = 1
(2π)3

〈
∆̃Tb(®k) ∆̃T∗b (®k

′)
〉
. (3)

Here, ∆̃Tb(®k) is the Fourier transform of ∆Tb(®r), and the angular
brackets denote an ensemble average.

6 https://github.com/mariogrs/Simfast21

MNRAS 000, 1–17 (2018)

Evaluating 21cm machine learning techniques 3

2.2 SimFast21

To generate our three-dimensional 21cm maps, we use the publicly
available semi-numerical code SimFast217 (version 1.0).We briefly
describe the algorithm here. The simulation begins by seeding an
initial linear density field onto a three-dimensional grid at very high
redshift. This linear density field is evolved using first-order per-
turbation theory (see Zel’dovich 1970) giving a non-linear density
field δ(®r).

The simulation then finds the highest density regions where
the matter will collapse to form luminous structures and thus con-
tribute ionizing photons towards the reionization process. The ex-
tent of collapse is calculated from the non-linear density field in
two different ways. For the collapse of the largest and most massive
regions, SimFast21 explicitly resolves individual dark matter ha-
los using an excursion-set formalism (Furlanetto et al. 2004). This
method is only used for the collapse of regions larger than a single
pixel which means that halos can be resolved down to 5×109M� in
our simulations. For smaller unresolved regions, SimFast21 uses the
approximate ellipsoidal collapse method from Sheth et al. (2001):
if themean enclosed density in a region exceeds a theoretical critical
value then the region is assumed to collapse. The collapse fraction
fcoll(®r, R) on decreasing scales R is then found from the contri-
butions of both resolved and unresolved halos. A fixed simulation
parameter Mmin controls the minimum considered mass of collaps-
ing region, since small dark matter halos are generally considered to
have very low star formation rates (see Barkana & Loeb 2001 for a
review) and can be ignored as not contributing a significant number
of ionizing photons.

The ionization fraction field xHII(®r) is found by determining
whether the collapsed matter in a region generates enough ioniz-
ing photons to ionize the enclosed hydrogen atoms. An ionizing
efficiency parameter ζion specifies how many ionizing photons are
sourced per unit of collapsed matter. Pixels are painted as fully ion-
ized if fcoll(®r, R) > ζ−1

ion, otherwise they are set as partially ionized
according to the collapsed fraction in the cell ζion fcoll(®r, R). Finally,
Equation (1) is used to find the 21cm brightness temperature field
δTb(®r) from the non-linear density field δ(®r) and the neutral fraction
field xHI(®r) = 1 − xHII(®r).

Three simulation parameters stand out as the most powerful
ways to constrain reionization scenarios from data:

(i) The ionization efficiency ζion, specifying how many ionising
photons are sourced per unit of collapsed matter;
(ii) The maximum bubble size Rmax, specifying the maximum

travel distance for ionizing photons from their sources;
(iii) The lower mass limit Mmin, specifying the minimum mass

of collapsed matter which produces ionizing photons.

SimFast21 also has the option to account for local fluctuations
in the spin temperature, at the expense of considerably more com-
putation time. We turn off this functionality to give a usable training
dataset size in a reasonable time frame.

3 MACHINE LEARNING TECHNIQUES

Themachine learning techniques in this paper are methods of multi-
dimensional regression: learning the behaviour of some function
f (®x) from noisy example training data yn = f (®xn) + Noise. The
noise in all our data is sample variance from randomly seeding

7 https://github.com/mariogrs/Simfast21

different density fields at the start of each simulation. We do not
include instrumental noise because our emulators are intended as
efficient replacements for the expensive simulations themselves. For
comparison with observed telescope data, instrumental noise can be
added in the comparison stage after running the clean emulated sim-
ulations. After fitting, the models can make predicted evaluations
f (®x∗) at new input values ®x∗. This section describes the different
machine learning techniqueswe used alongwith theoretical descrip-
tions of their specific training methodologies. Each method learns
the behaviour of the SimFast21 power spectrum for any reioniza-
tion scenario specified by a continuous range of SimFast21 input
parameters. The trained models can then make fast power spectrum
predictions for new scenarios, provided the new scenario parame-
ters do not lie far outside the range of our representative training
data.

3.1 Interpolation

The simplest method for prediction is to interpolate the power spec-
trum outputs within the training data. We use two interpolation
methods, linear interpolation and nearest-neighbour interpolation,
implemented using the classes LinearNDInterpolator and Nearest-
NDInterpolator from the scipy module (Jones et al. 2001). These
methods involve no hyperparameter searching and ignore the effect
of sample variance noise in the training data. We include them as a
naive benchmark to compare the accuracy and speed performance
with the other models. The scipy LinearNDInterpolator class uses
qhull from Barber et al. (1996) to triangulate the input data, com-
puting five-dimensional surfaces in the input space and then per-
forming linear interpolation on these triangles. This process takes a
long time, both for training and prediction. The scipy NearestND-
Interpolator class makes predictions by returning the output value
from the nearest training data point. This process is very fast but
generally results in poorer predictions.

3.2 Multilayer perceptron

An artificial neural network (ANN) represents the function f (®xi)
by manipulating its input values ®xi through a series of weighted
summations and simple function evaluations. This series of repeated
operations can be thought of as occurring in a series of layers. The
values in the first layer ®h(0) are simply the input values ®xi . The
network manipulates the values from one layer h(l−1)

j
to the values

in the next layer h(l)
j

using

®h(l) = h(l)
j
= φθ

(
Ni∑
i=1

W (l)
i j

h(l−1)
j

)
. (4)

The values in the l-th layer are a weighted sum over the values in
the previous layer, using trainable weight values W (l)

i j
, and are then

passed through an activation function φθ (x). The final layer contains
the network’s fitted evaluations of the function, f (®xi). Training the
network requires finding the weight values W (l)

i j
which most closely

mimic the function’s behaviour.
Multilayer perceptrons (MLPs) are ANNs which contain at

least one hidden layer and have a non-linear activation function.
Figure 1 shows a schematic of a typical MLP’s layer structure.
Lines represent the weighted connections between values. Circles
represent the neurons which schematically hold the values h(l)

j
and

MNRAS 000, 1–17 (2018)

4 W. D. Jennings et al.

h0
0

h0
1

h0
2

h1
0

h1
1

h1
2

h1
3

h2
0

h2
1

h2
2

h3
0

h3
1

h3
2

...

...

... ...

Hidden
Layer 1

(h1)

Hidden
Layer 2

(h2)

Input
Layer

(h0)

Output
Layer

(h3)

Figure 1. Visualization of a multilayer perceptron with two hidden layers.
Lines are weighted connections directed from left to right. Circles are the
neurons which schematically hold the values, pass the weighted sum of
inputs through the activation function, and send this final value to the next
layer.

pass the weighted inputs through the activation function. We use the
scikit-learn package from Pedregosa et al. (2011) for all our MLPs,
using the following default inputs: a constant learning rate of 0.001;
batches of size 200; the rectified linear unit function (‘relu’) as our
activation function.

MLP training involves finding the weight values W (l)
i j

which
minimize the objective function,

MLP Objective =
1

2N

N∑
n=1

(
f (®xn) − yn

)2 − α
2

∑
i, j,l

(
W (l)

i j

)2
(5)

for training data (®xn, yn). The weights are initialised using a dif-
ferent random seed for each model. The function evaluation f (®xn)
in Equation (5) follows the procedure given in the previous sub-
section: passing the input values ®xn through multiple layers of
weighted sums and activation function evaluations. Before train-
ing, one must fix the number of hidden layers and the number of
neurons in each hidden layer. We use a fixed L2 regularization pa-
rameter value of α = 0.0001 to reduce the effect of overfitting.
The scikit-learn class for MLP uses backpropagation algorithm
Werbos (1982) for efficient calculation of the gradient of the ob-
jective function, see Rumelhart et al. (1986) for a more detailed de-
scription of this algorithm. We use the ‘adam’ optimization method
(Kingma & Ba 2014) which terminates when the objective func-
tion falls below a tolerance of 10−10 for at least two consecutive
iterations.

3.3 Gaussian processes regression

Gaussian process regression (GPR) is a fitting process for a func-
tion whose values are drawn from a Gaussian process. A Gaussian
process is a set of random variables, any subset of which follow a
jointlymulti-variate Gaussian. For a finite set of D random variables

0 2 4 6 8 10
Input x

10

5

0

5

10

15

O
u

tp
u

t
y

f (x) = x sin(x)
GP Mean and Covariance

Figure 2. Example of Gaussian process regression on noisy data yn =

xn sin(xn) + N(0, εn), with the noise amplitude on each data point εn
being randomly drawn randomly from the interval [0.5, 1.5]. The mean
function (solid blue line) and covariance kernel (shaded blue region) are
found which best match the training data (red points).

stored in a vector ®f = [f1, . . . , fD], the probability density function
P(®f) of a multi-variate Gaussian has the form

log P(®f) = −1
2

D∑
i, j=1

(
fi − µi

)
Ki j

(
fj − µj

)
+ constant. (6)

Fitting this finite distribution involves finding the elements
®µ = [µ1, . . . , µD] of the mean vector, and the elements Ki j of
the covariance matrix. A Gaussian process extends the concept of
a multi-variate Gaussian to infinite dimensions, by replacing the
finite-dimensional forms [®f , ®µ, Ki j] with functional forms [f (®x),
m(®x), k(®xi, ®xj)]. A Gaussian process can then be thought of as a
distribution over functions, and training involves finding the optimal
forms for the mean function m(®x) and a covariance kernel k(®xi, ®xj).
Predictions aremade by finding the function valueswhichmaximize
the joint posterior of the training data and the new input values, all of
which are assumed to be drawn from the same Gaussian processes.
The choice of covariance kernel reflects the expected properties of
the underlying process, such as smoothness or periodicity. Figure 2
shows an example of fitting a Gaussian process, where both the
fitted mean function and covariance kernel have been shown.

Gaussian process regression involves finding the likelihood
distributions of the mean function m(®x) and covariance function
k(®xi, ®xj) which result analytically from the noisy training data.
These likelihood distributions are combined with input prior distri-
butions, to give the final posterior distributions from which predic-
tions can be made. Our prior for the mean function is

m(®x) = ®A + b®x (7)

with trainable parameters ®A and b (initialised to zeros) specifying
a linear relationship to each of the five input dimensions. Our prior
for the covariance function is the Matern32 kernel,

kM32(®xi, ®xj) = σ2
(
1 +
√

3| ®xi − ®xj |
ρ

)
exp

(
−
√

3| ®xi − ®xj |
ρ

)
(8)

with trainable parameters for the kernel variance σ2 and kernel

MNRAS 000, 1–17 (2018)

Evaluating 21cm machine learning techniques 5

length-scale ρ (both initialised to unity). The Matern32 is used to
represent data with a moderate level of smoothing. Both of these
kernel parameters control over-fitting of this model. For instance, a
smaller value of ρ allows the mean function to change more rapidly
as a function of the inputs, which can cause the model to overfit the
training data.

Training this model involves finding the matrix elements Ki j =

k(®xi, ®xj) of the training data. The expected mean and variance for a
new prediction test location ®x∗ are then given by

f (®x∗) =
N∑

i, j=1
k(®xi, ®x∗)

(
Ki j + σ

2δi j
)−1

yj , (9)

Var(f (®x∗)) = k(®x∗, ®x∗) −
N∑

i, j=1
k(®xi, ®x∗)

(
Ki j + σ

2δi j
)−1k(®x∗, ®xj) ,

(10)

from Rasmussen & Williams (2006). Note that these equations in-
volve inverting the large matrix (Ki j +σ

2δi j), which in our case has
910002 elements. Using python 8-byte float64 values, simply stor-
ing a single object instance of this matrix takes 60GB of RAM. Our
computer architecturewith 128GBofRAMis not large enough to in-
vert such a matrix, since inversion requires much more RAM than a
single matrix instance. Sparse Gaussian process regression (SGPR)
is an approximation of GPR for huge data sets. SGPR approximates
thematrix inversion by using only a subset ofm observed data points
and inverting this smaller matrix instead. These m ‘inducing points’
are effectively an additional set of fitting parameters. Our SGPR
model uses the gpflow package8 which implements the methods
in Titsias (2009) using TensorFlow (Abadi et al. 2015). The gpflow
package uses the scipy.optimize.minimize functionwith the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) method
to find the best set of inducing points. The minimization method
uses the default termination method, i.e. when the maximum com-
ponent of the objective function’s gradient falls below a tolerance
of 10−5.

3.4 Support vector machine

Support vector machine (SVM) models are often used for classifi-
cation, but can also be used for regression. In SVM classification,
training involves finding a set of hyperplanes which separate the
training data into their labelled classes while at the same time max-
imizing the distance between the hyperplanes and the nearest train-
ing data points. SVM regression extends this concept to functional
forms, so that training the model involves finding a function f (®x)
whose evaluations at the training points ®xn are most similar to the
observed training values yn, while at the same time ensuring that the
function is as simple as possible. We use the scikit-learn package
(Pedregosa et al. 2011) for our support vector machine models.

SVM training involves finding the functional form f (®x) such
that the residual errors between the training data (®xn, yn) and the
function evaluations f (®xn) all lie within some tolerance −ε 6
f (®xn) − yn 6 ε . This stringent constraint usually makes it im-
possible to find any such form f (®x). To weaken the condition and
allow a solution, the slack variables (ξn, ξ∗n) are introduced so that
the residual fitting error f (®xn) − yn for the training point (®xn, yn)

8 http://gpflow.readthedocs.io/en/latest/intro.html

obeys −ε − ξ∗n 6 f (®xn) − yn 6 ε + ξn. This optimization problem
is more easily solved in the dual form, with objective function

SVR Objective =
N∑

i, j=1

(
αi − α∗i

)
k(®xi, ®xj)

(
αj − α∗j

)
+ ε

N∑
i=1

(
αi + α

∗
i

)
−

N∑
i=1

(
yi(αi − α∗i)

)
.

(11)

Training involves finding the values (αi, α∗i) which minimize this
objective function, subject to margin constraints

N∑
i=1

(
αi − α∗i

)
= 0 and 0 6 αi, α

∗
i 6 C . (12)

The kernel function k(®xi, ®xj) in Equation (11) controls the
functional form f (®x). We try three different kernel functions: radial
basis function (RBF), polynomial, and sigmoid. As discussed in
Section 5.2.2 later, the only kernel which gives rise to reasonable
accuracy predictions (withMSE less than 500%) is the RBF kernel,

kRBF(®xi, ®xj) = exp
(
− γ

�� ®xi − ®xj ��2)
. (13)

The RBF kernel is infinitely differentiable, hence is often used to
model data from smooth distributions. Before training, one must set
the penalty term C, the kernel influence range γ (hereafter written
gamma to match the python class parameter), and the margin toler-
ance ε (written epsilon). Overfitting for SVR models is discouraged
by C the penalty term.

4 EMULATOR TRAINING

In this section we describe how we create the training data and
the specific choices we make in training our emulators. Standard
practice is to use a large training dataset and then check that the
trained emulators make valid predictions for unseen validation data.
The training results are given later in Section 5. All emulators are
trained on the same architecture, each on a single node using 16
Xeon E5-2650 cores and 128GB RAM.

4.1 SimFast21 simulations

We run 2000 SimFast21 simulations in total, retaining only the
three input reionization parameters and the final output spheri-
cally averaged power spectra for each simulation. We use 1000
simulations for training, 500 for validation, and another 500 for
testing the emulators which have highest prediction accuracy on
the validation data. Each simulation generates three-dimensional
realisations of the δTb field in a cube of size 500Mpc resolved
into 5123 pixels (smoothed from density fields resolved into 15363

pixels). This gives power spectra values for seven redshift values:
{8.0, 9.5, 11.0, 12.5, 14.0, 15.5, 17.0} and thirteen k-values in the
range {0.02, 3.0} hMpc−1. This corresponds to 91000 overall train-
ing data points, and 45500 data points each for validation and testing.
The power spectra data have size of 335MB for all 2000 simulations,
compared to 7TB size of all δTb boxes.

MNRAS 000, 1–17 (2018)

6 W. D. Jennings et al.

4.2 Training set design

Our emulators map five input values to a single output target value.
The target value is the δTb power spectrumvalue for the given inputs.
The first three input values are the three reionization parameters (see
Section 2.2), which are different for each simulation. The final two
inputs are the redshift z and the k-value, the values for which are
constant across all simulations and are given in Section 4.1. The
function f (®x) which the models are fitting is then the spherically
averaged 21cm power spectrum P∆Tb (Mmin, ζion, Rmax, z, k).

We use the Latin Hypercube method designed by
McKay (1979) to choose the reionization parameter values for our
simulations. The Latin Hypercubemethod provides a way to sample
the three-dimensional input space in a more efficient way than naive
exhaustive grid-search. We use the following ranges and scalings
for the reionization parameters:

(i) Mmin in the logarithmic range [107.8, 109.8]
(ii) ζion in the linear range [5, 100]
(iii) Rmax in the linear range [5, 20]

These ranges match those used by the semi-numerical simulation
authors, see for example Greig & Mesinger (2015). The lower Mmin
limit comes from the lowest temperature at which atomic hydrogen
can cool and accrete onto halos, and the upper limit from obser-
vations of high-redshift Lyman break galaxies (Greig & Mesinger
2015). The ζion range roughly corresponds to ionizing photon escape
fractions of 5% to 100%. The Rmax range arises from recombina-
tion models of Sobacchi & Mesinger (2014), and only has an effect
near the end of reionization when the ionized bubble sizes are com-
parable to Rmax (Alvarez & Abel 2012, McQuinn et al. 2007). See
Figures 8 and 9 later for example power spectra across these ranges
for ζion and Mmin values.

We also test three different scaling types for the target values to
determine which gives the most accurate emulation. These three are
a linear function y = Pk , a logarithmic function y = log[Pk], and
a pseudo-logarithmic function y = sinh−1[Pk] sometimes called
luptitude after Lupton et al. (1999). We test logarithmic scaling as
an attempt to exploit the fact that power spectra appear more nat-
urally spaced in logarithmic space log[Pk] than in linear space
Pk . However a few percent of the power spectra data are zero-
valued, especially at early and late redshifts where the ionization
field xHII(®r) becomes uniform and δTb is effectively zero every-
where (Pritchard & Loeb 2012, pages 12-13). Our motivation for
luptitude scaling is to retain as much data as possible: a purely loga-
rithmic scaling would require us to throw away all zero-valued data
points and reduce the size of our training data set. We comment
on the effects of including or excluding these zero-valued data in
Section 6.2.

4.3 k-range restriction

We exclude the largest and smallest scales from our validation and
testing data, including only 0.1 6 k 6 2.0 values. On large scales
(k < 0.1 hMpc−1), the power spectrum is affected by foregrounds
Datta et al. (2010). The finite resolution of our simulations means
that there is little information in the power spectrum on very small
scales (k > 2.0 hMpc−1). These restrictions are common for semi-
numerical simulations, see for example Greig & Mesinger (2015).

4.4 Goodness of fit evaluations

For validation and testing, we measure the goodness of fit between
predicted target values y∗(k, z) and measured target values y(k, z)
using the mean squared error

MSE
[
y(k, z), y∗(k, z)

]
=

1
NzNk

Nz∑
z

Nk∑
k

(
y(k, z) − y∗(k, z)

y(k, z)

)2
(14)

along with the percentage mean squared error, 100 × MSE. The
MSE is averaged over all Nz redshifts values and all Nk scale values
in the range 0.1 6 k 6 2.0, unless explicitly mentioned otherwise.
For comparability, we use this same error function for all different
emulators during validation and testing, although the models use
different error metrics for determining their training convergence
(see Section 3 for the training objective functions for each model).

5 EMULATOR TRAINING RESULTS

After training each emulator, we test its accuracy by generating
predictions for a set of unseen validation data. By calculating the
MSE value in Equation (14) between the predicted outputs and the
true outputs, we determine which emulator makes the most accurate
predictions. A low MSE means a high prediction accuracy.

5.1 Target value scaling

Here we compare the prediction accuracy for the three scaling
methods of the target power spectra values: linear, logarithmic, and
pseudo-logarithmic sinh−1(x). As expected, the linear function has
poor prediction accuracy because the power spectra values are more
naturally spaced in logarithmic space than in linear space. The log-
arithmic function works fairly well at intermediate redshifts for this
same reason, but all of the zero-valued power spectrum values had
to be discarded as log(0) is undefined. The pseudo-logarithmic func-
tion sinh−1(x) has the highest prediction accuracy over all redshifts
and allows us to retain all training data points (with zero-valued
outputs or otherwise). We use the pseudo-logarithmic function in
all our emulators from here on.

5.2 Hyperparameter searching

Each model has a set of trainable values referred to as fitting param-
eters. Many models have an additional set of values which must be
fixed even before starting to train, referred to as hyperparameters.
Here we describe which hyperparameters (if any) we vary for each
model type, and which hyperparameters give rise to the best predic-
tion accuracy. For each model, we restrict the total training time for
all hyperparameter searching to 156 CPU hours. The interpolation
models involve no hyperparameters, and for the SGPR model we
simply increase the number of inducing pointsm until the individual
model’s training time reaches 156 CPU hours. Increasing m should
always increase the SGPRmodel’s accuracy and so the value of m is
not treated as a hyperparameter when considering the total training
time. Including models with smaller m values in the total training
time would give a smaller maximum value of m, making an unfair
comparison with the other models.

MNRAS 000, 1–17 (2018)

Evaluating 21cm machine learning techniques 7

20

60

100

140

180

S
e
co

n
d

 L
a
ye

r
S

iz
e

20 60 100 140 180
First Layer Size

20

100

200

T
h

ir
d

 L
a
ye

r
S

iz
e

40 80 120 160 200
Second Layer Size

0.0

0.2

0.4

0.6

0.8

1.0

M
S

E

Figure 3.Mean squared error on the validation data for three-layermultilayer
perceptron models, as a function of the sizes of each hidden layer. The red
star shows the layer sizes of the MLP emulator with the highest prediction
accuracy: 160 neurons in the first hidden layer, 180 neurons in the second
hidden layer, and 20 neurons in the final hidden layer.

5.2.1 MLP layer sizes

WeuseMLPmodelswith one, two and three hidden layers. The sizes
of the hidden layers were varied linearly in the range [0, 200] using
a simple grid-search method. Generally, the emulator models with
more hidden layers have higher prediction accuracy. The validation
MSE values for the best one-, two- and three-layer MLP emulators
are 13%, 2.3%, and 1.6% respectively. The validation MSE values
for three-layer MLP emulators are shown in Figure 3 as a function
of the sizes of each of the three hidden layers. Most three-layer MLP
models have a low validationMSE near 10%. The best emulator has
hidden layers sizes 160 − 180 − 20, the hyperparameters for which
are indicated by the location of the red star. Our MLP models end
training when the objective function changes more slowly than a
threshold tolerance for several training epochs. Most of our MLP
models achieved this in fewer than 400 training epochs, with some
1-layer models lasting up to 800 epochs.

5.2.2 SVM margin hyperparameters

We test a range of SVM emulators with different values for three
hyperparameters controlling the margin. We vary the penalty pa-
rameter C logarithmically in the range [10−3, 103]; the tolerance
epsilon logarithmically in the range [10−3, 100]; and the kernel in-
fluence range gamma logarithmically in the range [10−3, 103]. These
hyperparameters are the suggested ranges by sklearn and we use a
simple grid-search to find the best hyperparameters. We also test
three kernel functions: RBF, sigmoid, and polynomial. Figure 4
shows how the validation MSE of emulators using the RBF kernel
depends on the SVM hyperparameters. The different colour-map is
used to emphasise that the colour range is logarithmic and has a
much larger spread of MSE values between 0.2 and 2000 (or be-
tween 20% and 2 × 105%). The best SVM emulator has validation
MSE of 20%, using hyperparameters C = 1.0, epsilon = 10−3,
gamma = 1.0 and the RBF kernel. All SVM emulators with kernels
other than RBF have much worse validation MSE: the best polyno-

10 3
10 2
10 1
100
101
102
103

C

10 3 10 2 10 1 100

epsilon

10 3
10 2
10 1
100
101
102
103

ga
m

m
a

10 3 10 1 101 103

C

0.2

2

20

200

2000

M
S

E

Figure 4. Mean squared error on the validation data as a function of the
model hyperparameters, for support vector machine emulators using the
RBF kernel. The hyperparameters are the penalty term C, margin tolerance
epsilon and influence range gamma. The spread of MSE values is much
larger for SVM models, indicated by the logarithmic colour scale between
MSE values of 10−1 and 103. The hyperparameters of the highest prediction
accuracy SVMmodel are indicated by the red star: C = 1.0, epsilon = 10−3

and gamma = 1.0.

mial and sigmoid SVM emulators have validationMSEs of 50000%
and 500% respectively.

5.3 Overfitting tests

For each model we determine the best hyperparameters by trying a
range of values and selecting the emulator which shows the high-
est prediction accuracy on the validation data. By trying different
hyperparameter values we can usually find a closer fit to the data.
However, this process is sensitive to over-fitting: the model might
fit the training data more closely, but it may not extend well to new
data. We test for overfitting by training a series of emulators with
increasing training dataset sizes, keeping the hyperparameters fixed
at the proposed best values. Providing more training data should
give rise to improved predictions for the unseen validation data. If
providing more training data instead leads to a decrease in valida-
tion prediction accuracy, then overfitting has occurred: the model
makes good predictions for the training data, but does not extend
well to new input values. Figure 5 shows the results of these tests,
giving the mean square error on the validation data for each model,
using differently sized training datasets. All mean squared errors
generally decrease with increased training set size, implying that
none has been overfitted.

5.4 Performance on testing data

Here we test the performance of the best emulator for each model
type using all 500 simulations in our testing set. Table 1 shows
the accuracy and speed of each emulator for making predictions on
the entire testing dataset. The global MSE percentage is averaged
across the entire testing data set. In Section 6.2 later, we discuss the
fact that our emulators have worse accuracy at lower redshifts. We
include a column in Table 1 for the percentageMSE averaged across
the testing data with higher redshifts (z > 10). Figure 6 shows an

MNRAS 000, 1–17 (2018)

8 W. D. Jennings et al.

10
3

10
4

10
5

Training Set Size

10
2

10
1

10
0

10
1

10
2

10
3

M
e
a
n

 S
q

u
a
re

 E
rr

o
r

Support Vector Machines

Multilayer Perceptron

Sparse Gaussian Processes

Linear Interpolator

Nearest Interpolator

Figure 5.Mean squared error on the validation data as a function of training
set size. The best hyperparameters were fixed for each model, and the em-
ulator retrained with more training information. The MSE curves generally
improve with more training data, implying that none has been overfitted.

example of the power spectra outputs from the best emulator of each
model type, showing the predictions for a single test simulation near
the canonical reionization parameters at z = 9.5.

6 EMULATOR TRAINING DISCUSSION

Figure 7 shows the predictionMSE of each emulator as a function of
location in parameter space. The dark regions indicate the regions
of parameter space which are most difficult to emulate. All panels in
Figure 7 show a region of poorer prediction accuracy for inputs near
Mmin = 109. This is likely due to the finite mass resolution of our
SimFast21 simulations. For values of Mmin near the mass resolu-
tion, the simulation switches between containing both resolved and
unresolved halos (if Mmin < 5× 109), and containing only resolved
halos (if Mmin > 5 × 109). The change in behaviour appears to be
difficult to emulate for all model types.

6.1 Speed and accuracy performance

The three-layer multilayer perceptron is the best candidate for emu-
lating SimFast21 behaviour. Table 1 shows that this emulator makes
fast and accurate predictions for the test dataset, taking less than a
second tomatch the true simulation outputswithin 4%mean squared
error averaged across the whole input parameter space. Figure 7a
shows that the emulator makes accurate predictions across a wide
range of input parameters. Worse performance is seen for MLP em-
ulators using fewer hidden layers: increasing the number of layers
allows MLP models to be more flexible, and our results indicate
that one- and two-layer MLP models are not flexible enough to fit
the simulation outputs as accurately as three-layer models. Figures
8 and 9 show several example power spectra for a range of ζion and
Mmin values, also showing the predicted power spectra from this
best emulator. The shaded red regions in these figures indicate the
ranges of excluded k-values. Given the benefit of most three-layer
models over two-layer models, it seems likely that models using
four or more layers could provide even closer fit to the training data.
We do not investigate such models, given our fixed upper limit on

10
1

10
0

Scale k / h Mpc 1

10
1

10
0

(k
3 /2

2)
P(

k)

Simfast21

Support Vector Machines

Multilayer Perceptron

Sparse Gaussian Processes

Linear Interpolation

Nearest Interpolation

Figure 6. Predicted δTb power spectra of a canonical simulation with reion-
ization parameters {5 × 108M�, 30.0, 10 Mpc}. Dotted lines show the pre-
dictions from the best emulator of each type. Solid line shows the power
spectrum from an actual SimFast21 simulation. The red shaded areas indi-
cate the k-values that were excluded from our validation and testing. This test
simulation was chosen from the testing data as the nearest to the canonical
reionization parameters. The model using nearest-neighbour interpolation
has significantly different predictions, likely owing to the underfitting pro-
cesses discussed in Section 6.1.

training time. Additionally, the benefit of adding more layers would
likely be minimal as there is a clear case of diminishing returns
for each additional layer: the best MSE for one layer was 27%; two
layers gave 4.5% MSE; and three layers gave 3.8%.

The two interpolation models are the worst candidates for em-
ulating SimFast21 behaviour. The nearest-neighbour interpolation
model has poor prediction accuracy both in terms of the globalMSE
value of 290% from Table 1, and the local MSE across parameter
space shown in Figure 7b. The model uses the nearest-neighbour
lookup method of scipy.spatial.KDTree which is fast but makes
no account of noise or smoothness in the simulation behaviour.
The linear interpolation model emulates the SimFast21 behaviour
more closely: the global MSE is 17% and the local MSE in Fig-
ure 7c shows larger regions of good accuracy. This accuracy is at
the expense of much slower prediction times. The nearest neighbour
model makes predictions for the whole testing dataset in less than a
second, whereas the linear interpolation model takes several hours.
Our results indicate that interpolation methods cannot capture the
complicated behaviour of SimFast21, justifying the need for more
complex machine learning techniques.

Our sparse Gaussian processes model is a poor emulator can-
didate. Both the local MSE in Figure 7d and the global MSE of
36% are poor. The accuracy of the model would almost certainly be
improved by increasing the number of inducing points, which would
lessen the matrix inversion approximation. However, training mod-
els with m > 2730 would require more than the allowed CPU time.
Our value of m = 2730 is chosen as the largest number of inducing
points whose model training time does not exceed 156 hours. A
hard upper limit of m < 18000 is found for our 128GB RAM ar-
chitecture, since values of m larger than this cause a ResourceError
in tensorflow. Moreover, increasing the number of inducing points
also increases the prediction time: using m = 910 takes 16 seconds
to make predictions for the testing dataset; using m = 2730 takes
116 seconds. Increasing the number of inducing points gives better
accuracy at the expense of much slower prediction times.

MNRAS 000, 1–17 (2018)

Evaluating 21cm machine learning techniques 9

10

30

50

70

90

io
n

8.0 8.5 9.0 9.5
Mmin

6

8

10

12

14

16

18
R m

ax

10 30 50 70 90

ion

0.00

0.15

0.30

0.45

0.60

0.75

0.90

M
S

E

(a) Three-layer Multilayer Perceptron

10

30

50

70

90

io
n

8.0 8.5 9.0 9.5
Mmin

6

8

10

12

14

16

18

R m
ax

10 30 50 70 90

ion

0.00

0.15

0.30

0.45

0.60

0.75

0.90

M
S

E

(b) Nearest ND Interpolation

10

30

50

70

90

io
n

8.0 8.5 9.0 9.5
Mmin

6

8

10

12

14

16

18

R m
ax

10 30 50 70 90

ion

0.00

0.15

0.30

0.45

0.60

0.75

0.90

M
S

E
(c) Linear ND Interpolation

10

30

50

70

90

io
n

8.0 8.5 9.0 9.5
Mmin

6

8

10

12

14

16

18

R m
ax

10 30 50 70 90

ion

0.00

0.15

0.30

0.45

0.60

0.75

0.90

M
S

E

(d) Sparse Gaussian Processes

10

30

50

70

90

io
n

8.0 8.5 9.0 9.5
Mmin

6

8

10

12

14

16

18

R m
ax

10 30 50 70 90

ion

0.00

0.15

0.30

0.45

0.60

0.75

0.90

M
S

E

(e) Support Vector Machine

Figure 7. Mean squared error on testing dataset for the five model types, as a function of prediction location in the three-dimensional reionization parameter
space. Each panel shows the MSE values marginalized over all but two input dimensions. For instance, the ζion-Mmin panels show the MSE values as
marginalised over {Rmax, z, and k} dimensions.

MNRAS 000, 1–17 (2018)

10 W. D. Jennings et al.

Model Type Global Test MSE % (all z) Test MSE % for z > 10 Prediction Time
Nearest Neighbour Interpolation 290 % ∗ 5.1 % 0.20s
Sparse Gaussian Processes m = 2730 36 % 0.6 % 116s
Support Vector Machine 32 % 2.1 % 27s
1-layer Multilayer Perceptron 27 % 9.2 % 0.07s
Linear Interpolation 17 % 1.6 % 4.1 hours ∗
2-layer Multilayer Perceptron 4.5 % 2.3 % 0.14s
3-layer Multilayer Perceptron 3.8 % 1.4 % 0.27s

Table 1. Speed and accuracy performance of the best emulator for each technique, using the testing data set. The percentage MSE values here are 100 ×MSE.
The rows are sorted in order of global prediction accuracy, from highest MSE (least accurate) at the top to lowest MSE (most accurate) at the bottom. We
give global MSE values averaged across the entire dataset and also the MSE for a subset of the testing data with z > 10 to demonstrate that most of the poor
accuracy occurs at later redshifts. See Section 6 for a discussion on the extreme (∗) values for the two naive interpolation methods. For all models except SGPR,
the total time for hyperparameter searches is 156 CPU hours. For SGPR model, we run a single model with the largest possible number of inducing points m
without exceeding 156 hours training time.

10
1

10
0

Scale k

10
3

10
2

10
1

10
0

10
1

k3 P
(k

)/2
2

ion = 10, xHII = 0.12
ion = 20, xHII = 0.29
ion = 30, xHII = 0.55
ion = 40, xHII = 0.74
ion = 60, xHII = 0.91
ion = 70, xHII = 0.97
ion = 90, xHII = 0.99

Figure 8. Example emulated and simulated power spectra for a range of ζion
values at z = 9.5, for fixed Mmin = 5×108 and Rmax = 10. Solid line shows
the simulated power spectra, dotted line shows the predicted power spectra
from our best emulator. The ionization fraction for each line is given in the
legend.

The support vector machine model is also a poor candidate for
a SimFast21 emulator. The global MSE of 32% from Table 1 is one
of the worst. This model also has slow prediction speeds, taking 27
seconds to make predictions of the testing data (100 times slower
than the best MLPmodel). It is possible that using other kernels and
doing deeper hyperparameter searches would give better accuracy.
Given the long prediction times for these models, we find it unlikely
that any SVM models would outperform our best MLP emulator,
either in terms of speed or accuracy.

6.2 Low redshift performance

The prediction accuracy of our emulators isworse for lower redshifts
than for higher redshifts. If data for z < 10 are excluded from
performance testing, then all our emulators improve significantly:
for instance, the three-layermultilayer perceptron’s percentageMSE
improves from 3.8% to 1.4%. The improved values using only high-
redshift power spectra are presented in the third column of Table 1.
There are two effects that could be causing the worse accuracy at
lower redshift, which we discuss here.

First, our emulators differ from those of Kern et al. (2017) and
Schmit & Pritchard (2018) in that our models are trained using the
redshift and k-scales as extra input dimensions. Our motivation for
including redshift and k-scales was to allow for immediate pre-

10
1

10
0

Scale k

10
3

10
2

10
1

10
0

10
1

k3 P
(k

)/2
2

Mmin = 1 × 108, xHII = 0.93
Mmin = 2 × 108, xHII = 0.76
Mmin = 4 × 108, xHII = 0.55
Mmin = 8 × 108, xHII = 0.44
Mmin = 2 × 109, xHII = 0.05

Figure 9. Example emulated and simulated power spectra for a range of
Mmin values at z = 9.5, for fixed ζion = 30 and Rmax = 10. Solid line shows
the simulated power spectra, dotted line shows the predicted power spectra
from our best emulator. The ionization fraction for each line is given in the
legend.

dictions at any redshift or k-scale. Without including these input
dimensions the trained models would only make prediction at the
fixed redshifts and k-scales of the training data. Making predictions
at other input values with such fixed-input emulators would require
further interpolation afterwards. Although using z as an input al-
lows for more flexible predictions, this flexibility is likely a cause
of poorer emulation at lower redshifts. Without more computing
power or faster training algorithms we would suggest that future
attempts to emulate the power spectrum should be done for fixed z
inputs.

Secondly, a feature of the actual simulated power spectra could
be another source of poor emulator accuracy. The amplitude of the
power spectrum in Equation (3) is highly sensitive to the global
21cm brightness temperature 〈δTb〉. At low redshifts near the end of
reionization, 〈δTb〉 approaches zero (see Pritchard & Loeb 2012 for
a review). This low value of 〈δTb〉 amplifies even small fluctuations
in δTb, causing a sharp increase in the fluctuation field ∆Tb(®r) from
which the power spectrum is calculated. Soon after, reionization
finishes and∆Tb(®r) = 0 everywhere so that the amplitude of P∆Tb (k)
jumps suddenly from high-amplitude to zero-amplitude. These two
sudden features are difficult to emulate: the sharp increase in power
spectrum amplitude near the end of reionization, and the sudden
drop thereafter from high-amplitude to zero-amplitude.

We investigate the low redshift behaviour in two ways. First,

MNRAS 000, 1–17 (2018)

Evaluating 21cm machine learning techniques 11

10

30

50

70

90

io
n

8.0 8.5 9.0 9.5
Mmin

6

10

14

18

R m
ax

10 30 50 70 90

ion

(a) Three-layer MLP for z = 8.0

10

30

50

70

90

io
n

8.0 8.5 9.0 9.5
Mmin

6

10

14

18

R m
ax

10 30 50 70 90

ion

(b) Three-layer MLP for z = 9.5

10

30

50

70

90

io
n

8.0 8.5 9.0 9.5
Mmin

6

10

14

18

R m
ax

10 30 50 70 90

ion

0.00

0.15

0.30

0.45

0.60

0.75

0.90

M
S

E

(c) Three-layer MLP for z = 11.0

Figure 10. Mean squared error on testing dataset for the best MLP model as a function of prediction location, similar to Figure 7 but without averaging over
redshift. The prediction quality is much worse at low redshift than it is at high redshift, shown by the large darker regions at low redshift. The percentage MSE
for z > 11.0 is better than 5% across almost all of the input parameter space. We omit plotting panels for each z > 11.0 here as they all look similar to that for
z = 11.0.

0.0 0.2 0.4 0.6 0.8 1.0
Ionized fraction xHII

0

2

4

6

8

10

R
e
la

ti
ve

 F
re

q
u

e
n

cy

z < 10.0
z 10.0

Figure 11. Normalised histogram of the ionization fraction for all simu-
lations, for low redshifts (z < 10) and for higher redshifts (z > 10). The
21cm power spectrum is sensitive to the neutral fraction. The fact that many
simulations are fully ionized for z < 10 could be one reason for the poor
performance of our emulators at low redshifts.

we plot the local prediction performance of our best emulator
at each redshift in the training data. Figure 10 shows the best
emulator’s local MSE separately for the three lowest redshifts
z = {8.0, 9.5, 11.0}. For z > 10, very few of the simulations
in our training data have completed reionization and thus very few
contain the associated problematic zero-valued power spectra. In
Figure 10c and for higher redshifts, the local performance is consis-
tently good across the parameter space. At z = 9.5 some simulations
are near the end of reionization, and the local performance in Fig-
ure 10b begins to show regions of poorer predictions. By z = 8,
a large number of simulations have completed reionization. These
regions have zero-amplitude power spectra and show much worse
performance, in particular those with high ζion and low Mmin in
Figure 10a.

Our second method to examine the low redshift behaviour
is to observe how many simulations have finished reionization at
each redshift. Figure 11 shows normalised histograms of the global
ionization fraction values for all simulations in our data, separating

into lower redshifts (z < 10) and higher redshifts (z > 10). For
higher redshifts, most simulations are near the start of reionization,
with ionization fractions xHII < 0.4. For lower redshifts, many
models have finished reionization with ionization fractions nearing
xHII = 1.0. This difference causes the low redshift power spectra
to contain sudden features which are difficult to emulate. Training
using δTb − 〈δTb〉 as the target values rather than ∆Tb could remove
the sudden changes in power spectramagnitudes andwould be easier
to emulate. We note for instance that Kern et al. (2017) were able to
emulate down to z = 5 without reporting any issues for emulating
these redshifts.

7 USE CASE: MAPPING BETWEEN SimFast21 AND
21cmFAST

21cmFAST and SimFast21 are two common semi-numerical sim-
ulations for generating predicted 21cm maps during the Epoch of
Reionization. In this section we use our best emulator to investigate
the extent to which the two simulations give similar outputs for
similar inputs. Our motivation for this is to demonstrate a method
for creating a mapping between any two simulations which gen-
erate the same output statistic. In particular, this method could be
extended to give a mapping between SimFast21 power spectra and
those from more accurate (but slower) three-dimensional radiative
transfer simulations, such as C2-RAY (Mellema et al. 2006). Al-
though numerical simulations have different input parameters to
semi-numerical simulations, it would still be possible to map be-
tween them by finding the parameters which best match their output
power spectra. When analysing huge datasets, SimFast21 could be
used to give coarse constraints on reionization parameters. Using
the mapping between SimFast21 and the more accurate numerical
simulation, the coarse contours could be mapped to their equivalent
regions of the numerical simulation inputs. This would allow more
detailed exploration of this smaller region of parameter space with
the numerical simulations.

MNRAS 000, 1–17 (2018)

12 W. D. Jennings et al.

7.1 21cmFAST

Here we describe the default procedure of 21cmFAST , in particular
highlighting how it differs from the SimFast21 algorithms described
earlier in Section 2.2. In the following section we discuss which of
these differences we retain when creating the mapping. The linear
and non-linear density fields in 21cmFAST are seeded in the same
way as in SimFast21.

The first difference between the simulations is the method
for calculating collapse fractions from the non-linear density
field. 21cmFAST does not resolve individual halos, but rather
calculates the collapse fraction directly from the non-linear
density field following the model of spherical collapse from
Press & Schechter (1974). In order to match the more accurate el-
lipsoidal collapse model from Sheth et al. (2001), 21cmFAST af-
terwards normalises the spherical collapse fractions so that their
average value matches that expected from ellipsoidal collapse.

The second difference is the method for calculating the ion-
ization fraction. Both simulations calculate the ionization frac-
tion by determining whether the collapsed matter in a region
emits enough photons to ionize the surrounding matter. If there
are enough photons, then SimFast21 paints the entire spheri-
cal region as ionized using the fully overlapping-spheres method
in Mesinger & Furlanetto (2007), whereas the default 21cmFAST
algorithm is to paint only the central pixel of the region
Zahn et al. (2007). The latter method is much faster but the al-
gorithms give a considerably different reionization history for the
same inputs (see Hutter 2018). 21cmFAST has an option to match
the method of SimFast21.

The final difference is in the evolution of the parameter Mmin.
The default 21cmFAST implementation allows the minimum halo
mass Mmin to evolve with redshift by setting a minimum virial
temperature Tvir for ionizing photons.

7.2 Matching reionization histories

Using identical reionization and cosmological parameters, and
keeping all other input parameters at their default values from the
GitHub packages, 21cmFAST version 1.29 and SimFast21 version
1.0 result in different reionization histories, as expected due to the
different default bubble-finding algorithms. Our motivation in this
section is to demonstrate a method for mapping between the input
parameters of two similar (but not identical) simulations. Using the
default implementations, the output power spectra of the two sim-
ulations at a single fixed redshift are not comparable because the
two simulations have reached different stages of reionization. Be-
fore making the mapping, we chose input parameters of 21cmFAST
which more closely matched the SimFast21 algorithm, so that the
output power spectra are similar enough that making a mapping is
meaningful, but not so similar that they give identical results. The
following is a list of significant input parameters in 21cmFAST that
we adjusted from the default values:

(i) FIND_BUBBLE_ALGORITHM = 1
(ii) ION_Tvir_MIN = −1, instead using ION_M_MIN
(iii) INHOMO_RECO = 0

Appendix A lists all parameters used in both simulations
for repeatability. The most significant change from default
was in the algorithm for finding ionized bubbles, setting

9 https://github.com/andreimesinger/21cmFAST

6 8 10 12 14
Redshift

0.0

0.2

0.4

0.6

0.8

1.0

Io
n

iz
e
d

 F
ra

ct
io

n

SimFast21

21cmFast Full Sphere

21cmFast Central Pixel

Figure 12. Ranges of reionization histories that result from SimFast21 and
21cmFAST , withMmin varying from 108M� to 109M� . The region between
the black dotted curves indicates the range of histories from SimFast21.
The two coloured regions show the range of histories from 21cmFAST ,
both before (darker red) and after (lighter orange) matching the algorithms.
The other reionization parameters are fixed at ζion = 30.0 and Rmax =
10.0. The bubble-finding algorithm has a significant impact on the resulting
reionization history, and even after matching algorithms there is a slight
difference between SimFast21 and 21cmFAST .

FIND_BUBBLE_ALGORITHM = 1. Without making a judge-
ment on which method is more realistic we used the SimFast21 al-
gorithm of painting the entire sphere as ionized, rather than painting
only the central pixel. We fix the minimum mass Mmin for collapse
using ION_M_MIN, rather than using the default 21cmFAST func-
tionality of a fixed virial temperatureTvir using ION_Tvir_MIN.We
also turn off calculations involving inhomogeneous recombinations
by setting INHOMO_RECO = 0, since the version of SimFast21
that we use does not have this option (although later versions do, see
Hassan et al. 2016). Figure 12 shows the resulting ranges of reion-
ization histories from a spread of minimum halo mass scenarios
between 108M� − 109M� . Each minimum mass scenario is aver-
aged across five realisations. The histories are shown for SimFast21
(dotted) and for 21cmFAST with both bubble-finding algorithms:
ionising the central pixel only (darker red region) and ionising the
full sphere (lighter orange region) to match SimFast21. The only
remaining major differences between the default SimFast21 simu-
lation and the changed 21cmFAST simulation are in the specifics
of implementation discussed above. Figure 12 shows that the dif-
ferences in implementation still result in different reionisation his-
tories even after matching the bubble-finding algorithms, although
the bubble-finding algorithm is the most dominant effect.

7.3 Determining a mapping between simulations

Here we describe howwe use our best emulator to determine a map-
ping between the inputs of ourmodified 21cmFAST and the inputs of
SimFast21. We use the same k-space restrictions as in Section 4.3,
using only 0.1 6 k 6 2.0 since the large scales are subject to fore-
grounds and the small scales are subject to shot noise from the finite
simulation resolution. We also restrict our comparisons to higher
redshifts z > 10 for which our emulator exhibits higher predic-
tion accuracy. We emphasise that this is a proof-of-concept method
showing how to make a mapping between simulations solely using
the output power spectra.

MNRAS 000, 1–17 (2018)

Evaluating 21cm machine learning techniques 13

Figure 13 shows an example of one such mapping. We explain
how to interpret the mapping here. Suppose a reference 21cmFAST
simulation has already been run using the parameters specified by
the white star: namely, a 21cmFAST simulation with parameters
Mmin = 3 × 108M� , ζion = 30.0, Rmax = 10Mpc. According to the
mapping in Figure 13, any SimFast21 simulation using parameters
within the orange contour will result in power spectra which are
similar to the reference 21cmFAST spectra. We classify two sim-
ulations as similar if the mean-squared error between their output
power spectra is lower than 30%. The orange contour thus shows the
region of SimFast21 parameters which should be used, if the desired
result is to exhibit similar power spectra to the reference 21cmFAST
simulation. We generate the reference power spectra in Figure 13 by
running five 21cmFAST simulations, and taking the average to re-
duce the effect of sample variance.We then generate the contours by
using our emulator to run a large number of simulations across the
whole parameter space. For each emulated simulation, we calculate
the mean-squared error of its power spectra compared to the refer-
ence simulation. Note that our emulator makes these predictions in
seconds, rather than the several months that would be needed to run
the same number of full simulations. We refer to this type of figure
as a similarity plot. Most importantly, if the orange contour does
not overlap with the white star, then this indicates that SimFast21
and 21cmFAST result in significantly different output power spectra
for the same input parameters.

Two features of the orange contours are immediately apparent.
First, the extended contours in the Rmax direction. The Rmax param-
eter is known to have little effect on the output power spectra for our
high redshifts (Mesinger et al. 2011). This is an inherent property
of the power spectrum, regardless of which simulation is used. A
second clear feature is the large curved contour in the Mmin-ζion
parameter space. We investigated both features, to confirm whether
they arise as an inherent property of the power spectrum itself, or
if they arise from differences in the two simulations. To do this,
we perform the same similarity analysis as above, but using Sim-
Fast21 itself as the reference simulation. The purple contours in
Figure 13 then give the regions of SimFast21 parameters which
result in similar power spectra to the reference SimFast21 simu-
lation. The lighter purple contours use a MSE threshold of 30%.
The darker purple contours use a stricter threshold of 15% MSE.
The curved feature appears in both orange and purple contours, in-
dicating that it is not due to a difference in the simulations. This
curved degeneracy has been observed previously, see for example
Greig & Mesinger (2015) and Schmit & Pritchard (2018). Note that
we do not include a dark orange contour for the the stricter 15%
MSE threshold because the power spectra for 21cmFAST differ from
those of SimFast21 enough that no 21cmFAST contours are visible
for an MSE threshold of 15%.

Figure 14 shows similarity plots for several other reference
simulations, where the parameters for each reference simulation
is again indicated by the location of the white star. We show the
contours in the two-dimensional Mmin-ζion space, ignoring the less
interesting Rmax direction. We find that the orange contour does not
always lie on top of the white star. This indicates that SimFast21
and 21cmFAST do not always result in similar output power spectra.
We use the same contour levels as in Figure 13, namely 15% and
30% for the darker and lighter purple contours, and 30% for the
21cmFAST contours. Again, no 15% MSE contour is shown for
21cmFAST because the SimFast21 power spectra differ from the
21cmFAST power spectra by more than 15% everywhere.

For several of these scenarios, there is an offset between the
orange contour and the white star. The offset is small near the canon-

30

50

70

90

io
n

8.0 8.5 9.0 9.5
log10 Mmin

5

10

15

20

R m
ax

10 30 50 70 90

ion

SimFast21

21cmFast

Figure 13. Mean squared error between emulated SimFast21 power spec-
tra and measured power spectra from both simulations. The star indicates
the fixed simulation parameters. The orange contour indicates the regions
where emulated SimFast21 power spectra are within 30% MSE of the fully-
simulated 21cmFAST power spectra. For comparison, the purple contours
indicate the same regions for comparing emulated SimFast21 power spec-
tra with fully-simulated SimFast21 power spectra, using 30% MSE (lighter
contour) and 15% MSE (darker contour).

ical parameters in the central panels, but gets larger at lower Mmin
and higher ζion. Themost likely reason for this offset is the difference
in the reionization histories. This offset would mean that the choice
of using SimFast21 or using 21cmFAST would affect the outcome
of parameter estimation methods, such as maximising χ2 values
in Shimabukuro & Semelin (2017), or using MCMC methods as in
Schmit & Pritchard (2018) andKern et al. (2017). Note that the two
simulations in this comparison needn’t share the same types of input
parameters. For instance, it would be possible to generate the refer-
ence power spectra using a numerical radiative transfer simulation,
and determine how its inputs map to SimFast21.

8 CONCLUSIONS

Fast modelling of the 21cm signal will become a significant problem
in analysing the huge datasets from upcoming radio interferometry
experiments. Ideally, we would be able to compare numerical radia-
tive transfer simulations with these data. Current numerical simu-
lations are too slow to sample the input parameter space efficiently.
Semi-numerical simulations are faster but can still only be used to
constrain a small number of parameters. One potential solution to
this problem is to replace current semi-numerical simulations with
emulated models, reproducing the simulation outputs in a fraction
of the original simulation time.

In this paper, we train and compare emulators using five dif-
ferent machine learning techniques. The two naive interpolation
methods are not feasible as emulators, since they have either slow
prediction times (linear interpolationmodel) or poor accuracy (near-

MNRAS 000, 1–17 (2018)

14 W. D. Jennings et al.

10

30

50

70

90

10

30

50

70

90

10

30

50

70

90

8.0 8.5 9.0 9.5
10

30

50

70

90

8.0 8.5 9.0 9.5 8.0 8.5 9.0 9.5

log10(Minimum Halo Mass Mmin / M)

Io
n

iz
a
ti

o
n

 E
ff

ic
ie

n
cy

io

n

SimFast21

21cmFast

Figure 14. Similarity plots between emulated SimFast21 power spectra and fully-simulated power spectra from 21cmFAST (orange contours) and SimFast21
(purple contours). In each panel, the white star indicates the scenario parameters of the fully-simulated power spectra. The orange contour shows the regions
in which emulated SimFast21 power spectra differ by less than 30% from the fully-simulated 21cmFAST power spectra. The lighter- and darker-purple
contours show the equivalent regions for comparing emulated SimFast21 power spectra to fully-simulated SimFast21 power spectra, within 30% and 15% MSE
respectively. An offset can be seen for several of these different scenarios.

MNRAS 000, 1–17 (2018)

Evaluating 21cm machine learning techniques 15

est neighbour interpolation model). Of the three more sophisticated
models, one model performs much better than the others: the multi-
layer perceptron. This trained model makes predictions of the out-
puts from 500 SimFast21 simulations to within 4% mean squared
error averaged across all output points, reducing the modelling time
from around 3000 hours to less than a second. If CPU training time
is not a factor, then the accuracy of the sparse Gaussian processes
regression or support vector machine models could potentially be
improved with deeper hyperparameter searches. However, given
their already relatively long prediction times and the accurate per-
formance of the multilayer perceptron, these models are unlikely to
give an improvement over the three-layer multilayer perceptron.

Our emulators use redshift and k-scales as extra input dimen-
sions. This makes the models more flexible but gives rise to less
accurate emulation especially near the end of reionization at lower
redshifts. We also use ∆Tb =

δTb
〈δTb 〉 − 1 as the target values of our

emulators. This gives rise to sudden features in the power spectra
near at the end of reionization and is harder to emulate than using
δTb − 〈δTb〉.

We use our best emulator to determine a relationship between
two different reionization algorithms, using SimFast21 and a ver-
sion of 21cmFAST with non-default inputs.We find some noticeable
offsets in which input parameters match the power spectra outputs
of SimFast21 with those of 21cmFAST . We provide a graphical
description of how this offset depends on location in parameter
space, so that users could roughly determine which SimFast21 in-
put parameters should be used if the desired result is to match the
21cm power spectrum of an existing 21cmFAST simulation. Al-
though our results are for a version of 21cmFAST with non-default
inputs, this method has potential for bridging between fast semi-
numerical simulations and more accurate three-dimensional radia-
tive transfer code such as C2-RAY (Mellema et al. 2006). However,
Majumdar et al. (2014) noted that there can be a 25% difference be-
tween the power spectrum outputs of C2-RAY and semi-numerical
codes. Given this discrepancy, it is likely that mapping between nu-
merical and semi-numerical simulations will be considerably more
challenging and it may be necessary to emulate numerical codes
directly.

ACKNOWLEDGEMENTS

Many thanks to Mario Santos and Andrei Mesinger for their help-
ful comments on a draft version of this paper. WDJ is supported
by the Science and Technology Facilities Council (ST/M503873/1)
and from the European Community through the DEDALE grant
(contract no. 665044) within the H2020 Framework Program of
the European Commission. CAW acknowledges financial support
from the European Research Council under ERC grant number
638743-FIRSTDAWN (held by Jonathan Pritchard). FBA acknowl-
edges support from the DEDALE grant, from the UK Science and
Technology Research Council (STFC) grant ST/M001334/1, and
from STFC grant ST/P003532/1.

REFERENCES

Abadi M., et al., 2015, TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems, https://www.tensorflow.org/

Ali Z. S., et al., 2015, ApJ, 809, 61
Alvarez M. A., Abel T., 2012, ApJ, 747, 126
Barber C. B., Dobkin D. P., Huhdanpaa H., 1996, ACM TRANSACTIONS

ON MATHEMATICAL SOFTWARE, 22, 469

Barkana R., Loeb A., 2001, Phys. Rep., 349, 125
Datta A., Bowman J. D., Carilli C. L., 2010, ApJ, 724, 526
DeBoer D. R., et al., 2017, PASP, 129, 045001
Furlanetto S. R., Zaldarriaga M., Hernquist L., 2004, The Astrophysical

Journal, 613, 1
Furlanetto S. R., Oh S. P., Briggs F. H., 2006, Phys. Rep., 433, 181
Gillet N., Mesinger A., Greig B., Liu A., Ucci G., 2018, preprint,

(arXiv:1805.02699)
Greig B., Mesinger A., 2015, MNRAS, 449, 4246
Greig B., Mesinger A., 2018, in Jelić V., van der Hulst T., eds, IAU

Symposium Vol. 333, Peering towards Cosmic Dawn. pp 18–21
(arXiv:1705.03471), doi:10.1017/S1743921317011103

Greig B., Mesinger A., Pober J. C., 2016, MNRAS, 455, 4295
Hassan S., Davé R., Finlator K., Santos M. G., 2016, MNRAS, 457, 1550
Hassan S., Davé R., Finlator K., Santos M. G., 2017, MNRAS, 468, 122
Hutter A., 2018, MNRAS, 477, 1549
Jones E., Oliphant T., Peterson P., et al., 2001, SciPy: Open source scientific

tools for Python, http://www.scipy.org/
Kern N. S., Liu A., Parsons A. R., Mesinger A., Greig B., 2017, ApJ, 848,

23
Kingma D. P., Ba J., 2014, preprint, (arXiv:1412.6980)
KulkarniG., ChoudhuryT.R., PuchweinE.,HaehneltM.G., 2016,MNRAS,

463, 2583
Liu A., Pritchard J. R., Allison R., Parsons A. R., Seljak U., Sherwin B. D.,

2016, Phys. Rev. D, 93, 043013
Lupton R. H., Gunn J. E., Szalay A. S., 1999, AJ, 118, 1406
Majumdar S.,MellemaG., Datta K. K., JensenH., Choudhury T. R., Bharad-

waj S., Friedrich M. M., 2014, MNRAS, 443, 2843
Majumdar S., Pritchard J. R., Mondal R., Watkinson C. A., Bharadwaj S.,

Mellema G., 2018, MNRAS, 476, 4007
McKay M. D. e. a., 1979, Technometrics, pp vol. 21, no. 2, pp. 239âĂŞ245
McQuinn M., Lidz A., Zahn O., Dutta S., Hernquist L., Zaldarriaga M.,

2007, MNRAS, 377, 1043
Mellema G., Iliev I. T., Alvarez M. A., Shapiro P. R., 2006, New Astron.,

11, 374
Mellema G., et al., 2013, Experimental Astronomy, 36, 235
Mesinger A., Furlanetto S., 2007, The Astrophysical Journal, 669, 663
Mesinger A., Furlanetto S., Cen R., 2011, MNRAS, 411, 955
Patil A. H., et al., 2017, ApJ, 838, 65
Pedregosa F., et al., 2011, Journal of Machine Learning Research, 12, 2825
Pober J. C., Greig B., Mesinger A., 2016, MNRAS, 463, L56
Press W. H., Schechter P., 1974, ApJ, 187, 425
Pritchard J. R., Loeb A., 2012, Reports on Progress in Physics, 75, 086901
Rasmussen Williams 2006, Gaussian Processes for Machine Learning. The

MIT Press
Rumelhart D. E., Hinton G. E., Williams R. J., 1986, Nature, 323, 533
Santos M. G., Ferramacho L., Silva M. B., Amblard A., Cooray A., 2010,

MNRAS, 406, 2421
Schmit C. J., Pritchard J. R., 2018, MNRAS, 475, 1213
Semelin B., Eames E., Bolgar F., Caillat M., 2017, MNRAS, 472, 4508
Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1
Shimabukuro H., Semelin B., 2017, MNRAS, 468, 3869
Shimabukuro H., Yoshiura S., Takahashi K., Yokoyama S., Ichiki K., 2016,

MNRAS, 458, 3003
Sobacchi E., Mesinger A., 2014, MNRAS, 440, 1662
Tingay S. J., et al., 2013, Publ. Astron. Soc. Australia, 30, e007
Titsias M., 2009, in Proceedings of the Twelth International Confer-

ence on Artificial Intelligence and Statistics. PMLR, Hilton Clear-
water Beach Resort, Clearwater Beach, Florida USA, pp 567–574,
http://proceedings.mlr.press/v5/titsias09a.html

Watkinson C. A., Majumdar S., Pritchard J. R., Mondal R., 2017, MNRAS,
472, 2436

Watkinson C. A., Giri S. K., Ross H. E., Dixon K. L., Iliev I. T., Mellama
G., Pritchard J. R., 2018, preprint, (arXiv:1808.02372)

Werbos P. J., 1982, in Drenick R. F., Kozin F., eds, System Modeling and
Optimization. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 762–
770

MNRAS 000, 1–17 (2018)

https://www.tensorflow.org/
http://dx.doi.org/10.1088/0004-637X/809/1/61
http://adsabs.harvard.edu/abs/2015ApJ...809...61A
http://dx.doi.org/10.1088/0004-637X/747/2/126
http://adsabs.harvard.edu/abs/2012ApJ...747..126A
http://dx.doi.org/10.1016/S0370-1573(01)00019-9
http://adsabs.harvard.edu/abs/2001PhR...349..125B
http://dx.doi.org/10.1088/0004-637X/724/1/526
http://adsabs.harvard.edu/abs/2010ApJ...724..526D
http://dx.doi.org/10.1088/1538-3873/129/974/045001
http://adsabs.harvard.edu/abs/2017PASP..129d5001D
http://dx.doi.org/10.1016/j.physrep.2006.08.002
http://adsabs.harvard.edu/abs/2006PhR...433..181F
http://arxiv.org/abs/1805.02699
http://dx.doi.org/10.1093/mnras/stv571
http://adsabs.harvard.edu/abs/2015MNRAS.449.4246G
http://arxiv.org/abs/1705.03471
http://dx.doi.org/10.1017/S1743921317011103
http://dx.doi.org/10.1093/mnras/stv2618
http://adsabs.harvard.edu/abs/2016MNRAS.455.4295G
http://dx.doi.org/10.1093/mnras/stv3001
http://adsabs.harvard.edu/abs/2016MNRAS.457.1550H
http://dx.doi.org/10.1093/mnras/stx420
http://adsabs.harvard.edu/abs/2017MNRAS.468..122H
http://dx.doi.org/10.1093/mnras/sty683
http://adsabs.harvard.edu/abs/2018MNRAS.477.1549H
http://www.scipy.org/
http://dx.doi.org/10.3847/1538-4357/aa8bb4
http://adsabs.harvard.edu/abs/2017ApJ...848...23K
http://adsabs.harvard.edu/abs/2017ApJ...848...23K
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1093/mnras/stw2168
http://adsabs.harvard.edu/abs/2016MNRAS.463.2583K
http://dx.doi.org/10.1103/PhysRevD.93.043013
http://adsabs.harvard.edu/abs/2016PhRvD..93d3013L
http://dx.doi.org/10.1086/301004
http://adsabs.harvard.edu/abs/1999AJ....118.1406L
http://dx.doi.org/10.1093/mnras/stu1342
http://adsabs.harvard.edu/abs/2014MNRAS.443.2843M
http://dx.doi.org/10.1093/mnras/sty535
http://adsabs.harvard.edu/abs/2018MNRAS.476.4007M
http://dx.doi.org/10.1111/j.1365-2966.2007.11489.x
http://adsabs.harvard.edu/abs/2007MNRAS.377.1043M
http://dx.doi.org/10.1016/j.newast.2005.09.004
http://adsabs.harvard.edu/abs/2006NewA...11..374M
http://dx.doi.org/10.1007/s10686-013-9334-5
http://adsabs.harvard.edu/abs/2013ExA....36..235M
http://dx.doi.org/10.1111/j.1365-2966.2010.17731.x
http://adsabs.harvard.edu/abs/2011MNRAS.411..955M
http://dx.doi.org/10.3847/1538-4357/aa63e7
http://adsabs.harvard.edu/abs/2017ApJ...838...65P
http://dx.doi.org/10.1093/mnrasl/slw156
http://adsabs.harvard.edu/abs/2016MNRAS.463L..56P
http://dx.doi.org/10.1086/152650
http://adsabs.harvard.edu/abs/1974ApJ...187..425P
http://dx.doi.org/10.1088/0034-4885/75/8/086901
http://adsabs.harvard.edu/abs/2012RPPh...75h6901P
http://dx.doi.org/10.1111/j.1365-2966.2010.16898.x
http://adsabs.harvard.edu/abs/2010MNRAS.406.2421S
http://dx.doi.org/10.1093/mnras/stx3292
http://adsabs.harvard.edu/abs/2018MNRAS.475.1213S
http://dx.doi.org/10.1093/mnras/stx2274
http://adsabs.harvard.edu/abs/2017MNRAS.472.4508S
http://dx.doi.org/10.1046/j.1365-8711.2001.04006.x
http://adsabs.harvard.edu/abs/2001MNRAS.323....1S
http://dx.doi.org/10.1093/mnras/stx734
http://adsabs.harvard.edu/abs/2017MNRAS.468.3869S
http://dx.doi.org/10.1093/mnras/stw482
http://adsabs.harvard.edu/abs/2016MNRAS.458.3003S
http://dx.doi.org/10.1093/mnras/stu377
http://adsabs.harvard.edu/abs/2014MNRAS.440.1662S
http://dx.doi.org/10.1017/pasa.2012.007
http://adsabs.harvard.edu/abs/2013PASA...30....7T
http://proceedings.mlr.press/v5/titsias09a.html
http://dx.doi.org/10.1093/mnras/stx2130
http://adsabs.harvard.edu/abs/2017MNRAS.472.2436W
http://arxiv.org/abs/1808.02372

16 W. D. Jennings et al.

Zahn O., Lidz A., McQuinn M., Dutta S., Hernquist L., Zaldarriaga M.,
Furlanetto S. R., 2007, The Astrophysical Journal, 654, 12

Zel’dovich Y. B., 1970, A&A, 5, 84

Appendices
A SIMULATION PARAMETERS

We list all relevant user-changeable parameters used for all 21cm-
FAST and SimFast21 simulations in this paper. For further de-
scriptions of these parameters see Mesinger et al. (2011) and
Santos et al. (2010). We exclude parameters relating to spin tem-
perature calculations since we did no use this functionality.

A.1 Cosmology

Parameter Value
σ8 0.810

Hubble h 0.710
ΩM 0.270
ΩΛ 0.730
Ωb 0.046
Ωn 0.0
Ωk 0.0
ΩR 0.0
Ωtot 1.0
YHe 0.245
ns 0.960

Sheth-Tormen b 0.34
Sheth-Tormen c 0.81
Helium II zreion 3

Maximum Redshift 17.00
Minimum Redshift 8.00

Redshift Step 1.50
Simulation Length 500.00
Star Formation Rate 0.025
Velocity Component 3
Critical Overdensity 1.680

A.2 SimFast21 reionization parameters

Parameter Name Value
use_camb_matterpower False

use_fcoll True
halo_Rmax 40
halo_Mmin Various
Ion_eff Various

bubble_Rmax Various
use_Lya_xrays False

A.3 21cmFAST reionization parameters

Parameter Name Value
ION_M_MIN Various
ION_Tvir_MIN -1 (off)

HII_EFF_FACTOR Various
EFF_FACTOR_PL_INDEX 0

R_BUBBLE_MAX Various

A.4 Other 21cmFAST parameters

MNRAS 000, 1–17 (2018)

http://adsabs.harvard.edu/abs/1970A%26A.....5...84Z

Evaluating 21cm machine learning techniques 17

Parameter Name Value
P_CUTOFF 0
M_WDM 2

g_x 1.5
INHOMO_RECO 0
ALPHA_UVB 5

t_STAR 0.5
EVOLVE_DENSITY_LINEARLY 0

SMOOTH_EVOLVED_DENSITY_FIELD 1
R_smooth_density 0.2

SECOND_ORDER_LPT_CORRECTIONS 0
HII_ROUND_ERR 1e-3

FIND_BUBBLE_ALGORITHM 1
R_BUBBLE_MIN L_FACTOR*1
USE_HALO_FIELD 0

N_POISSON -1
T_USE_VELOCITIES 1

MAX_DVDR 0.2
DIMENSIONAL_T_POWER_SPEC 0

DELTA_R_FACTOR 1.1
DELTA_R_HII_FACTOR 1.1
R_OVERLAP_FACTOR 1.0
DELTA_CRIT_MODE 1

HALO_FILTER 0
HII_FILTER 1
OPTIMIZE 0

OPTIMIZE_MIN_MASS 1e11
SIZE_RANDOM_SEED -23456789
LOS_RANDOM_SEED -123456789
USE_TS_IN_21CM 0

CLUMPING_FACTOR >50
Pop 2

Pop2_ion 4361

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–17 (2018)

	Introduction
	Models of reionization
	Power spectrum for deltatb
	SimFast21

	Machine learning techniques
	Interpolation
	Multilayer perceptron
	Gaussian processes regression
	Support vector machine

	Emulator training
	SimFast21 simulations
	Training set design
	k-range restriction
	Goodness of fit evaluations

	Emulator training results
	Target value scaling
	Hyperparameter searching
	Overfitting tests
	Performance on testing data

	Emulator training discussion
	Speed and accuracy performance
	Low redshift performance

	Use case: mapping between SimFast21 and 21cmFAST
	21cmFAST
	Matching reionization histories
	Determining a mapping between simulations

	Conclusions
	Appendices
	Simulation parameters
	Cosmology
	SimFast21 reionization parameters
	21cmFAST reionization parameters
	Other 21cmFAST parameters

